A taxonomic revision of Iris subser. Sibiricae is provided based on morphological and molecular analyses and the study of protologues and original material. Two to three species have been recognized in this subseries by botanists. To address the question of species delimitations and relationships within this group, we analyzed four non-coding regions of plastid DNA (trnS–trnG, trnL–trnF, rps4–trnSGGA, and psbA–trnH) for samples from 26 localities across the distribution ranges of two currently recognized species, I. sanguinea and I. sibirica. Variance analysis, based on nine characters, revealed no separation between taxa. Moreover, no morphological character could be used to define clear boundaries between taxa. Our results strongly support that I. subser. Sibiricae is monotypic and comprises only I. sibirica, instead of two or three species. Iris sibirica is morphologically variable and one of the most widespread Eurasian species of Iridaceae. Previously accepted taxa, I. sanguinea and I. typhifolia, are synonymised with I. sibirica and also two names, I. orientalis and I. sibirica var. haematophylla, which are typified here, are placed in the synonymy of I. sibirica. Information on the distribution of I. sibirica and the main features used to distinguish between I. sibirica and I. subser. Chrysographes species are provided.
Megadenia Maxim. is a small genus of the Brassicaceae endemic to East Asia with three disjunct areas of distribution: the eastern edge of the Qinghai-Tibetan Plateau, the Eastern Sayan Mountains in southern Siberia, and Chandalaz Ridge in the southern Sikhote-Alin Mountains. Although distinct species (M. pygmaea Maxim., M. bardunovii Popov, and M. speluncarum Vorob., Vorosch. and Gorovoj) have been described from each area, they have lately been reduced to synonymy with M. pygmaea due to high morphological similarity. Here, we present the first molecular study of Megadenia. Using the sequences of 11 noncoding regions from the cytoplasmic (chloroplast and mitochondrial) and nuclear genomes, we assessed divergence within the genus and explored the relationships between Megadenia and Biscutella L. Although M. bardunovii, M. speluncarum, and M. pygmaea were found to be indiscernible with regard to the nuclear and mitochondrial markers studied, our data on the plastid genome revealed their distinctness and a clear subdivision of the genus into three lineages matching the three described species. All of the phylogenetic analyses of the chloroplast DNA sequences provide strong support for the inclusion of Megadenia and Biscutella in the tribe Biscutelleae. A dating analysis shows that the genus Megadenia is of Miocene origin and diversification within the genus, which has led to the three extant lineages, most likely occurred during the Early-Middle Pleistocene, in agreement with the vicariance pattern. Given the present-day distribution, differences in habitat preferences and in some anatomical traits, and lack of a direct genealogical relationship, M. pygmaea, M. bardunovii, and M. speluncarum should be treated as distinct species or at least subspecies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.