The purpose of the current study was to investigate genetic differences between two inbred strains of rats, Fisher-344 (F344/N) and Wistar Albino Glaxo (WAG/GSto), in a number of drug-naive and drug-related behaviors, including oral and intravenous morphine self-administration. F344/N and WAG/GSto rats differed in drug-naive behaviors such as nociception, rearing and sensitivity to lick suppression tests but did not differ in locomotor activity, ambulation or grooming behavior. F344/N rats were less sensitive to thermal stimuli as measured via tail-flick response, and more sensitive to the suppressive effects of intermittent shock in a lick suppression test. The F344/N rats demonstrated a significantly greater amount of rearing in open field tests but did not differ from WAG/GSto rats in locomotor activity, ambulation or grooming behavior. In addition to the behavioral results, naive F344/N and WAG/GSto rats were found to differ in mu and alpha 2 receptor concentrations (F344/N > WAG/GSto) and in 5HT2 and D2 affinity constants (WAG/GSto > F344/N). These two inbred rat strains also differed in drug-related behaviors. F344/N rats showed significantly greater depression of locomotor activity at morphine 3 mg/kg than WAG/GSto rats. In addition, F344/N rats consumed significantly greater amounts of morphine in a two-bottle choice procedure and morphine maintained significantly greater amounts of behavior during intravenous self-administration sessions. Importantly, drug maintained behavior was significantly greater than with vehicle only in the F344/N rats during operant self-administration sessions.
Introduction. Detection of somatic mutations in the BRAF gene can be used in clinical oncology to clarify the diagnosis, select therapy and assess the prognosis of the disease. Pyrosequencing technology makes it possible to identify both already known and new mutations, as well as to determine the mutant allele ratio in the sample.The aim of the study was to develop the pyrosequencing-based method for detecting mutations in 592–601 codons of the BRAF gene.Material and Methods. The nucleotide sequences were obtained using «PyroMark Q24» instrument. The sensitivity and specificity of the method were estimated using dilutions of plasmid DNA samples containing the intact BRAF gene fragment mixed with sequence containing one of the mutations V600E, V600R, V600K, V600M, and K601E. The clinical testing was performed on 200 samples from thyroid nodules.Results. The developed method makes it possible to determine samples containing 2 % of the mutant allele for mutations V600K and V600R, 3 % for V600E and V600M, and 10 % for K601E. The pyrogram signal values for samples without mutations ranged from 0 to 19.5 % for different mutations. An analysis algorithm was developed to confirm the presence and differentiation of mutations in the 600 codon at a low proportion of the mutant allele based on the signals ratio on the pyrogram. The 47 clinical samples with mutations were found, 45 with V600E and 1 with V600_K601>E, for one sample, the type of mutation in the 600 codon could not be determined. The proportion of the mutant allele was 3.5–45 %. The concentration of extracted DNA less than 10 copies per mkl was obtained in 47 samples, of which 8 samples were found to have the mutations.Conclusion. The pyrosequencing-based method was developed for the detection of somatic mutations in 592–601 codons of the BRAF gene. The technique provided sufficient sensitivity to detect frequent mutations in the 600 codon and allowed the detection of rare mutations. Extraction of DNA from clinical samples obtained by fine-needle aspiration biopsy in most cases provided a sufficient concentration of DNA, which made it possible to use the technique in combination with cytological analysis without additional sampling. This approach can be applied to determine somatic mutations in DNA fragments of same length for other oncogenes.
The chemical sensitivity of neurons of the lateral hypothalamus of hungry and fed rabbits to pentagastrin (PG) and to the mediators, noradrenaline (NA) and dopamine (DA), was investigated utilizing indices which permit the assessment of the structural-functional organization of the impulse stream of nerve cells. It was demonstrated that the neurons of the lateral hypothalamus possess varied chemical sensitivity in the presence of alimentary motivation and during the satisfaction of the corresponding need. The microiontophoresis of PG changes the sensitivity of cells in hungry animals to a higher degree to DA (60%) than to NA (30%), while in fed animals, to a higher degree to NA (48%) than to DA (23%). The administration of NA against the background of the action of PG to fed rabbits decreased the percent of neurons with spike train complex activity. The number of cells in the deprived animals with impulse activity of a similar character decreased following the microiontophoresis of DA alone and DA against the background of the action of PG. It is concluded that PG exerts a modulating influence on the effects of NA and DA on the impulse activity of the neurons, and that the character of the effect of PG depends on the initial state of the animal.
Epilepsy is a neurological disease with different clinical forms and inter-individuals heterogeneity, which may be associated with genetic and/or epigenetic polymorphisms of tandem-repeated noncoding DNA. These polymorphisms may serve as predictive biomarkers of various forms of epilepsy. ACAP3 is the protein regulating morphogenesis of neurons and neuronal migration and is an integral component of important signaling pathways. This study aimed to carry out an association analysis of the length polymorphism and DNA methylation of the UPS29 minisatellite of the ACAP3 gene in patients with epilepsy. We revealed an association of short UPS29 alleles with increased risk of development of symptomatic and cryptogenic epilepsy in women, and also with cerebrovascular pathologies, structural changes in the brain, neurological status, and the clinical pattern of seizures in both women and men. The increase of frequency of hypomethylated UPS29 alleles in men with symptomatic epilepsy, and in women with both symptomatic and cryptogenic epilepsy was observed. For patients with hypomethylated UPS29 alleles, we also observed structural changes in the brain, neurological status, and the clinical pattern of seizures. These associations had sex-specific nature similar to a genetic association. In contrast with length polymorphism epigenetic changes affected predominantly the long UPS29 allele. We suppose that genetic and epigenetic alterations UPS29 can modify ACAP3 expression and thereby affect the development and clinical course of epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.