The oceans cover more than two-thirds of the planet, representing the vastest part of natural resources. Nevertheless, only a fraction of the ocean depths has been explored. Within this context, this article presents the H2020 ENDURUNS project that describes a novel scientific and technological approach for prolonged underwater autonomous operations of seabed survey activities, either in the deep ocean or in coastal areas. The proposed approach combines a hybrid Autonomous Underwater Vehicle capable of moving using either thrusters or as a sea glider, combined with an Unmanned Surface Vehicle equipped with satellite communication facilities for interaction with a land station. Both vehicles are equipped with energy packs that combine hydrogen fuel cells and Li-ion batteries to provide extended duration of the survey operations. The Unmanned Surface Vehicle employs photovoltaic panels to increase the autonomy of the vehicle. Since these missions generate a large amount of data, both vehicles are equipped with onboard Central Processing units capable of executing data analysis and compression algorithms for the semantic classification and transmission of the acquired data.
The present manuscript reviews state-of-the art models of hydrogen-assisted cracking (HAC) with potential for application to remaining life prediction of oil and gas components susceptible to various forms of hydrogen embrittlement (HE), namely, hydrogen-induced cracking (HIC), sulfide stress cracking (SSC), and HE-controlled stress corrosion cracking (SCC). Existing continuum models are compared in terms of their ability to predict the threshold stress intensity factor and crack growth rate accounting for the complex couplings between hydrogen transport and accumulation at the fracture process zone, local embrittlement, and subsequent fracture. Emerging multiscale approaches are also discussed, and studies relative to HE in metals and especially steels are presented. Finally, the challenges that hinder the application of existing models to component integrity assessment and remaining life prediction are discussed with respect to identification of model parameters and limitations of the fracture similitude, which paves the way to new directions for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.