Abstract. CO total column data are presented from three space sounders and two ground-based spectrometers in Moscow and its suburbs during the forest and peat fires that occurred in Central Russia in July-August 2010. Also presented are ground-based in situ CO measurements. The Moscow area was strongly impacted by the CO plume from these fires. Concurrent satellite-and ground-based observations were used to quantify the errors of CO top-down emission estimates. On certain days, CO total columns retrieved from the data of the space-based sounders were 2-3 times less than those obtained from the ground-based sun-tracking spectrometers. The depth of the polluted layer over Moscow was estimated using total column measurements compared with CO volume mixing ratios in the surface layer and on the TV tower and found to be around 360 m. The missing CO that is the average difference between the CO total column accurately determined by the ground spectrometers and that retrieved by AIRS, MOPITT, and IASI was determined for the Moscow area between 1.6 and 3.3 × 10 18 molec cm −2 . These values were extrapolated onto the entire plume; subsequently, the CO burden (total mass) over Russia during the fire event was corrected. A top-down estimate of the total emitted CO, obtained by a simple mass balance model increased by 40-100 % for different sensors due to this correction. Final assessments of total CO emitted by Russian wildfires obtained from different sounders are between 34 and 40 Tg CO during
Abstract:The spatial and temporal distributions of the carbon monoxide (CO) concentration were calculated with the Regional Atmospheric Modeling System and Hybrid Particle and Concentration Transport model (RAMS/HYPACT) in the provinces near Moscow during the abnormally hot summer of 2010. The forest, steppe and meadow hot spots were defined by the satellite data MCD14ML (MODIS Terra and Aqua satellite data). The calculations indicated that the surface CO concentrations from the model were two times less than the experimental data obtained from the Moscow State University ataset. The M and Zvenigorod Scientific Station (ZSS). Conversely, the total column CO concentrations obtained from the model were two to three times larger than the experimental values obtained from the Obukhov Institute of Atmospheric Physics (OIAP) and ZSS stations. The vertical transfer of pollutants was overestimated. Tentatively, it could be assumed that an aerosol influence in the model calculations is a reason for the overestimation. The comparisons between the wind speed, temperature and humidity profiles calculated in the model with the data from the standard balloon sounding exhibited good agreement. The CO total column data of the Measurements of Pollution in the Troposphere (MOPITTv5 NIR and TIR/NIR) obtained from the OIAP and ZSS stations appear more realistic than do the MOPITTv4 data. However, the surface MOPITT values of CO concentration for Moscow have the large distinction from the ground measurements.
OPEN ACCESSRemote Sens. 2015, 7
396A careful proposal regarding satellite orbit optimization was made, which could improve future spectrometric measurements, such as the MOPITT, Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) measurements.
Data are presented from three space sounders and two ground-based spectrometers in Moscow and its suburbs during the forest and peat fires that occurred in Central Russia in July–August 2010. The Moscow area was strongly impacted by the CO plume from these fires. Concurrent satellite- and ground-based observations were used to quantify the errors of CO top-down emission estimates. On certain days, CO total columns retrieved from the data of the space-based sounders were 2–3 times less than those obtained from the ground-based sun-tracking spectrometers. The depth of the polluted layer over Moscow was estimated using total column measurements compared with CO volume mixing ratios in the surface layer and on the TV tower and found to be between 180 and 360 m. The missing CO that is the average difference between the CO total column accurately determined by the ground spectrometer and that retrieved by MOPITT and AIRS, was determined for the Moscow area as ∼3 E18 molec cm<sup>−2</sup>. This value was extrapolated onto the entire plume; subsequently, the CO burden (total mass) over Russia during the fire event was corrected. A top-down estimate of the total emitted CO, obtained by a simple mass balance model increased by 80%–100% due to this correction (up to 40 Tg)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.