We succeeded in synthesizing of a whole family of isostructural solvates of the copper(II) hexafluoroacetylacetonate complex with pyrazolyl-substituted nitronyl nitroxide (L): Cu(hfac)2L x 0.Solv. The main feature inherent in nature of Cu(hfac)2L x 0.5 Solv single crystals is their incredible mechanical stability and ability to undergo reversible structural rearrangements with temperature variation, accompanied by anomalies on the mu(eff(T)) dependence. Structural investigation of the complexes over a wide temperature range before and after the structural transition and the ensuing magnetic phase transition showed that the spatial peculiarities of the solvent molecules incorporated into the solid govern the character of the mu(eff(T)) dependence and the temperature region of the magnetic anomaly. Thus, doping of crystals with definite solvent molecules could be used as an efficient method of control over the magnetic anomaly temperature (T(a)). The investigation of this special series of crystals has revealed the relationship between the chemical step and the magnetic properties. It was shown that "mild" modification of T(a) for Cu(hfac)2L x 0.5 Solv required a much smaller structural step than the typical change of one -CH2- fragment in a homologous series in organic chemistry. Quantum-chemical calculations with the use of X-ray diffraction data allowed us to trace the character of changes in the exchange interaction parameters in the range of the phase transition. In the temperature range of the phase transition, the exchange parameter changes substantially. The gradual decrease in the magnetic moment, observed in most experiments during sample cooling to T(a), is the result of the gradual increase in the fraction of the low-temperature phase in the high-temperature phase.
Since the classic work of Roothaan [Rev. Mod. Phys. 32, 179 (1960)], the one-electron energies of a ROHF method are known as ambiguous quantities having no physical meaning. Together with this, it is often assumed in present-day computational studies that Koopmans' theorem is valid in a ROHF method. In this work we analyze the specific dependence of orbital energies on the choice of the basic equations in a ROHF method which are the Euler equations and different forms of the generalized Hartree-Fock equation. We first prove that the one-electron open-shell energies epsilon(m) derived by the Euler equations can be related to the respective ionization potentials I(m) via the modified Koopmans' formula I(m)= -epsilon(m)f(m) where f(m) is an occupation number. As compared to this, neither the closed-shell orbital energies nor the virtual ones derived by the Euler equations can be related to the respective ionization potentials and electron affinities via Koopmans' theorem. Based on this analysis, we derive the new (canonical) form for the Hamiltonian of the Hartree-Fock equation, the eigenvalues of which obey Koopmans' theorem for the whole energy spectrum. A discussion of new orbital energies is presented on the examples of a free N atom and an endohedral N@C(60) (I(h)). The vertical ionization potentials and electron affinities estimated via Koopmans' theorem are compared with the respective observed data and, for completeness, with the respective estimates derived via a DeltaSCF method. The agreement between observed data and their estimates via Koopmans' theorem is qualitative and, in general, appears to possess the same accuracy level as in the closed-shell SCF.
Ternary flavor mixtures of ultracold fermionic atoms in an optical lattice are studied in the case of equal, repulsive on-site interactions U > 0. The corresponding SU(3) invariant Hubbard model is solved numerically exactly within dynamical mean-field theory using multigrid Hirsch-Fye quantum Monte Carlo simulations. We establish Mott transitions close to integer filling at low temperatures and show that the associated signatures in the compressibility and pair occupancy persist to high temperatures, i.e., should be accessible to experiments. In addition, we present spectral functions and discuss the properties of a novel "semi-compressible" state observed for large U near half filling.
Néel transition of lattice fermions in a harmonic trap: a real-space dynamic mean-field study Gorelik, E.V.; Titvinidze, I.; Hofstetter, W.; Snoek, M.; Blümer, N. Published in:Physical Review Letters DOI:10.1103/PhysRevLett.105.065301 Link to publication Citation for published version (APA):Gorelik, E. V., Titvinidze, I., Hofstetter, W., Snoek, M., & Blümer, N. (2010). Néel transition of lattice fermions in a harmonic trap: a real-space dynamic mean-field study. Physical Review Letters, 105(6), 065301. DOI: 10.1103/PhysRevLett.105.065301 General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. We study the magnetic ordering transition for a system of harmonically trapped ultracold fermions with repulsive interactions in a cubic optical lattice, within a real-space extension of dynamical mean-field theory. Using a quantum Monte Carlo impurity solver, we establish that antiferromagnetic correlations are signaled, at strong coupling, by an enhanced double occupancy. This signature is directly accessible experimentally and should be observable well above the critical temperature for long-range order. Dimensional aspects appear less relevant than naively expected.
We compute unbiased spectral functions of the two-dimensional Hubbard model by extrapolating Green functions, obtained from determinantal quantum Monte Carlo simulations, to the thermodynamic and continuous time limits. Our results clearly resolve the pseudogap at weak to intermediate coupling, originating from a momentum selective opening of the charge gap. A characteristic pseudogap temperature T * , determined consistently from the spectra and from the momentum dependence of the imaginary-time Green functions, is found to match the dynamical mean-field critical temperature, below which antiferromagnetic fluctuations become dominant. Our results identify a regime where pseudogap physics is within reach of experiments with cold fermions on optical lattices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.