Chronic imbalance between production and degradation of the human amyloid-beta peptide (Abeta) is assumed to play an important role in pathogenesis of Alzheimer's disease (AD). Post-translational modifications of Abeta could influence its interactions with specifically cleaving proteases and, therefore, perturb the Abeta homeostasis. The angiotensin-converting enzyme (ACE) was previously shown to degrade non-modified Abeta in vitro and in cells. In the presented work, we investigated the effect of isomerization of Asp-7, a common non-enzymatic age-related modification found in AD-associated Abeta species, on hydrolysis of Abeta by ACE. Two synthetic peptides corresponding to the Abeta region 1-16 with either Asp or isoAsp residues in position 7 were examined as monomeric soluble substrates for the N- as well as for the C-domain of ACE. The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) coupled with the (18)O-labeled internal standard approach has allowed us to show that (i) the N-domain of ACE (N-ACE), but not the C-domain, selectively cleaves the Arg-5-His-6 bond in both peptides, and that (ii) N-ACE hydrolyzes the isoAsp-7 analogue more efficiently than the non-modified one. Our results demonstrate a new endopeptidase activity of N-ACE as well as high preference of the domain to recognize and hydrolyze the isomerized Abeta species that were earlier suggested to promote AD pathogenesis. The results suggest the need for further analysis of biological effects of isomerized Abeta and its interaction with ACE in AD pathogenesis.
The prediction of biological activity spectra for substances as an approach for searching compounds with complex mechanisms of action was studied. New compounds with dual mechanisms of antihypertensive action were found by this approach. Biological activity spectra for substances were predicted on the basis of their structural formulas by the computer program PASS. Thirty molecular mechanisms of action of compounds from the MDDR 99.2 database, which cause the antihypertensive effect and can be predicted by PASS, have been identified. The analysis of predictions for compounds with 15 dual antihypertensive mechanisms of action from the MDDR 99.2 database has confirmed high accuracy of prediction. This approach was applied to databases of commercially available compounds (AsInEx and ChemBridge) and allowed us to select four substances that are potential inhibitors of angiotensin converting enzyme (ACE) and of neutral endopeptidase (NEP). At a later time, all these compounds were found to be the inhibitors of both ACE and NEP. The most potent compounds had IC(50) of 10(-7)-10(-9) M for ACE and 10(-5) M for NEP. New combinations of dual mechanisms of action never before found for antihypertensive compounds were predicted.
Angiotensin I-converting enzyme (ACE, peptidyl dipeptidase, EC 3.4.15.2) is a key enzyme in cardiovascular pathophysiology. A wide spectrum of monoclonal antibodies to different epitopes on the N and C domains of human ACE has been used to study different aspects of ACE biology. In this study we characterized the monoclonal antibody (mAb) 5F1, developed against the N domain of human ACE, which recognizes both the catalytically active and the denatured forms of ACE. The epitope for mAb 5F1 was defined using species cross-reactivity, synthetic peptide (PepScan technology) and phage display library screening, Western blotting, site-directed mutagenesis, and protein modeling. The epitope for mAb 5F1 shows no overlap with the epitopes of seven other mAbs to the N domain described previously and is localized on the other side of the N domain globule. The binding of mAb 5F1 to ACE is carbohydrate-dependent and increased significantly as a result of altered glycosylation after treatment with alpha-glucosidase-1 inhibitor, N-butyldeoxynojirimycin (NB-DNJ), or neuraminidase. Out of 17 species tested, mAb 5F1 showed strict primate ACE specificity. In addition, mAb 5F1 recognized human ACE in Western blots and on paraffin-embedded sections. The sequential part of the epitope for mAb 5F1 is created by the N-terminal part of the N domain, between residues 1 and 141. A conformational region of the epitope was also identified, including the residues around the glycan attached to Asn117, which explains the sensitivity to changes in glycosylation state, and another stretch localized around the motif 454TPPSRYN460. Site-directed mutagensis and inhibition assays revealed that mAb 5F1 inhibits ACE activity at high concentrations due to binding of residues on both sides of the active site cleft, thus supporting a hinge-bending mechanism for substrate binding of ACE.
Expression of matrix metalloproteinases (MMPs) and their endogenous regulators has been investigated in squamous cervical carcinoma (SCC). The study included (i) immortalized fibroblasts (IF) and three clones of fibroblasts transformed by oncogene E7 HPV-16 (TF); (ii) cell lines associated with HPV-16 and HPV-18; (iii) tumor tissue samples from patients with SCC, associated with gene E7 HPV-16. Transfection of fibroblasts with the E7 HPV16 oncogen was accompanied by induction of collagenase (MMP-1, MMP-14) and gelatinase (MMP-9) gene expression and the increase in catalytic activity of these MMP, while gelatinase MMP-2 expression remained unchanged. Expression of MMP-9 was found only inTF. MMP-9 may serve as a TF marker. In TF expression mRNA TIMP-1 was decreased. The level of free endogenous inhibitors in TF was significantly lower then the level in IF. Expression MMP correlated with the tumorigenic potential of TF. Invasive potential of cell lines associated with HPV18 (HeLa and S4-1) was more pronounced than that of cell lines associated with HPV16 (SiHa and Caski). The cell lines differed substantially in the level of expression of MMPI and their endogenous regulators. In most cell lines mRNA levels of collagenases MMP-1 and MMP-14 and the activator (uPA) increased, while gelatinase MMP-2 mRNA and tissue inhibitors mRNAs changed insignificantly. MMP-9 expression in cell lines was not detected. Results of studies on these cell lines suggest existence of an imbalance in the system enzyme / inhibitor / activator, that increases destructive potential of these cells. The study of expression of MMP and their endogenous regulators performed using SCC tumor samples associated with HPV16 has shown that the invasive and metastatic potentials of tumor tissue in SCC is obviously determined by the increase of expression of collagenases MMP-1, MT1-MMP and gelatinase MMP-9, decreased expression of inhibitors (TIMP-1 and TIMP-2), and to a lesser extent to increased expression of MMP-2. MMP-1 and MMP-9 can serve as markers of invasive and metastatic potential of the SCC tumor. In adjacent to the tumor normal tissue revealed a significant expression of MMP-1,-2,-9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.