Conducting polymers demonstrate low solubility in organic solvents. Introducing aliphatic substituents into polymer chains improves their solubility, but may also lead to changes in conformational characteristics of macromolecules. In the present work, the studies of hydrodynamic properties and conformational characteristics of comb-shaped poly(3-hexylthiophene) with aliphatic side substituents were carried out in chloroform solutions. Conformational analysis of the studied macromolecules was performed for the first time using homologous series with a wide range of molecular weights of the polymers in dilute solutions. The hydrodynamic properties of these macromolecules were interpreted using the worm-like spherocylinder model and the straight spherocylinder model. The projection of the monomer unit in the direction of the main polymer chain k 5 0.37 nm was determined experimentally. The following parameters of poly(3-hexylthiophene) were characterized and quantified: equilibrium rigidity (Kuhn segment length) ff 5 6.7 nm and hydrodynamic diameter of a polymer chain d 5 0.6 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.