Based on the magnetar model, we have studied in detail the processes of neutrino cooling of an electron-positron plasma generating an SGR giant flare and the influence of the magnetar magnetic field on these processes. Electron-positron pair annihilation and synchrotron neutrino emission are shown to make a dominant contribution to the neutrino emissivity of such a plasma. We have calculated the neutrino energy losses from a plasma-filled region at the long tail stage of the SGR 0526-66, SGR 1806-20, and SGR 1900+14 giant flares. This plasma can emit the energy observed in an SGR giant flare only in the presence of a strong magnetic field suppressing its neutrino energy losses. We have obtained a lower bound on the magnetic field strength and showed this value to be higher than the upper limit following from an estimate of the magnetic dipole losses for the magnetars being analyzed in a wide range of magnetar model parameters. Thus, it is problematic to explain the observed energy release at the long tail stage of an SGR giant flare in terms of the magnetar model.
Under the conditions of a strongly magnetized hyperaccretion disk around a Kerr black hole, we study the processes νi +νi → e − + e + and νi(νi) B −→ νi(νi) + e + + e − of electron-positron plasma production near the disk. We calculate the plasma production rate in these processes for some known parameters of neutrino emission from the disk while the magnetic field distribution is determined by qualitative considerations. We show that the magnetic field influence on the cross section of the annihilation process νi +νi → e − + e + can be neglected if ω 2 eB m 2 e . We also show that the rate of energy-momentum production in the e + e − plasma in the reaction νi(νi) B −→ νi(νi) + e + + e − significantly depends on the magnetic field distribution over the disk. To obtain the final estimate of the plasma production rate in this reaction, the strong magnetic field distribution near the neutrino emitting part of the disk must be determined.
В условиях гипераккреционного сильно замагниченного диска керровской черной дыры исследованы процессы $\nu_i+\tilde\nu_i\to e^-+e^+$, $\nu_i(\tilde\nu_i)\stackrel{B}{\longrightarrow} \nu_i(\tilde\nu_i)+e^++e^-$ рождения электрон-позитронной плазмы в окрестности диска. Эффективность рождения плазмы в данных процессах вычислена при известных параметрах нейтринного излучения из диска, распределение магнитного поля задавалось из качественных соображений. Показано, что в случае $\omega^2\gg eB\gg m_e^2$ можно пренебречь влиянием магнитного поля на сечение процесса аннигиляции $\nu_i+\tilde\nu_i\to e^-+e^+$. Показано также, что эффективность производства энергии-импульса в $e^+e^-$-плазме в реакции $\nu_i(\tilde\nu_i)\stackrel{B}{\longrightarrow} \nu_i(\tilde\nu_i)+e^++e^-$ существенно зависит от распределения магнитного поля в диске. Таким образом, для окончательной оценки эффективности рождения плазмы в данной реакции необходимо задать распределение сильного магнитного поля в окрестности нейтриноизлучающей части диска.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.