The aim of this study is to optimize the production of optically pure d (-) lactic acid (DLA) employing a cost-effective production medium. Based on the designed biomass approach, Sporolactobacillus inulinus NBRC 13595 was found to exhibit high DLA titer (19.0 g L ) and optical purity (99.6%). A cost-effective medium was constituted using Palmyra palm jaggery (PJ) from Borassus flabellifer and whey protein hydrolysate (WPH) as carbon and nitrogen sources, respectively. Plackett-Burman design indicated that PJ, WPH, and MnSO as significant variables influence DLA production. A rotatable central composite design and response surface methodology were used to optimize the PJ and WPH concentrations. A maximum DLA titer (170.14 g L ) was predicted for 222.24 g L of PJ and 11.99 g L of WPH, respectively. Fermentation experimental results exhibited a maximum DLA titer (189.0 ± 8.53 g L ) and productivity (5.25 ± 0.24 g L H ), which is the highest ever reported for DLA production from a renewable feedstock in the batch process. The present investigation substantiates that the potential application of economically viable raw feedstocks (PJ and WPH) for enhanced DLA production, which is attributed to 2.5-fold reduction in DLA production cost compared with conventional medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.