Background-The impressive clinical heterogeneity of the long-QT syndrome (LQTS) remains partially unexplained. In a South African (SA) founder population, we identified a common LQTS type 1 (LQT1)-causing mutation (KCNQ1-A341V) associated with high clinical severity. We tested whether the arrhythmic risk was caused directly by A341V or by its presence in the specific ethnic setting of the SA families. Methods and Results-Seventy-eight patients, all with a single KCNQ1-A341V mutation, from 21 families and 8 countries were compared with 166 SA patients with A341V and with 205 non-A341V LQT1 patients. In the 2 A341V populations (SA and non-SA), the probability of a first event through 40 years of age was similar (76% and 82%), and the QTc was 484Ϯ42 versus 485Ϯ45 ms (PϭNS). Compared with the 205 non-A341V patients with the same median follow-up (30 versus 32 years), the 244 A341V patients were more likely to have cardiac events (75% versus 24%), were younger at first event (6 versus 11 years), and had a longer QTc (485Ϯ43 versus 465Ϯ38 ms) (all PϽ0.001). Arrhythmic risk remained higher (PϽ0.0001) even when the A341V patients were compared with non-A341V patients with mutations either localized to transmembrane domains or exhibiting a dominant-negative effect. A341V patients had more events despite -blocker therapy. Conclusions-The hot spot KCNQ1-A341V predicts high clinical severity independently of the ethnic origin of the families. This higher risk of cardiac events also persists when compared with LQT1 patients with either transmembrane or dominant-negative mutations. The identification of this high-risk mutation and possibly others may improve the risk stratification and management of LQTS.
The SCN5A gene encodes the alpha-subunit of the Nav1.5 ion channel protein, which is responsible for the sodium inward current (INa). Since 1995 several hundred mutations in this gene have been found to be causative for inherited arrhythmias including Long QT syndrome, Brugada syndrome, cardiac conduction disease, sudden infant death syndrome, etc. As expected these syndromes are primarily electrical heart diseases leading to life-threatening arrhythmias with an "apparently normal heart". In 2003 a new form of dilated cardiomyopathy was identified associated with mutations in the SCN5A gene. Recently mutations have been also found in patients with arrhythmogenic right ventricular cardiomyopathy and atrial standstill. The purpose of this review is to outline and analyze the following four topics: 1) SCN5A genetic variants linked to different cardiomyopathies; 2) clinical manifestations of the known mutations; 3) possible molecular mechanisms of myocardial remodeling; and 4) the potential implications of gene-specific treatment for those disorders. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
The cardiac voltage-gated sodium channel Na v 1.5 conducts the rapid inward sodium current crucial for cardiomyocyte excitability. Loss-of-function mutations in its gene SCN5A are linked to cardiac arrhythmias such as Brugada Syndrome (BrS). Several BrS-associated mutations in the Na v 1.5 N-terminal domain (NTD) exert a dominant-negative effect (DNE) on wild-type channel function, for which mechanisms remain poorly understood. We aim to contribute to the understanding of BrS pathophysiology by characterizing three mutations in the Na v 1.5 NTD: Y87C-here newly identified-, R104W, and R121W. In addition, we hypothesize that the calcium sensor protein calmodulin is a new NTD binding partner. Recordings of whole-cell sodium currents in TsA-201 cells expressing WT and variant Na v 1.5 showed that Y87C and R104W but not R121W exert a DNE on WT channels. Biotinylation assays revealed reduction in fully glycosylated Na v 1.5 at the cell surface and in whole-cell lysates. Localization of Na v 1.5 WT channel with the ER did not change in the presence of variants, as shown by transfected and stained rat neonatal cardiomyocytes. We demonstrated that calmodulin binds the Na v 1.5 NTD using in silico modeling, SPOTS, pull-down, and proximity ligation assays. Calmodulin binding to the R121W variant and to a Na v 1.5 construct missing residues 80-105, a predicted calmodulin-binding site, is impaired. In conclusion, we describe the new natural BrS Na v 1.5 variant Y87C and present first evidence that calmodulin binds to the Na v 1.5 NTD, which seems to be a determinant for the DNE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.