The strong delocalization of the energy of femtosecond pulses in silicon appears to be an essential factor for preventing laser damage inside a crystal and seemingly excludes the possibility of direct laser writing in the bulk, at least in the one-and two-photon absorption (1 PA and 2 PA) wavelength regions. Previously, the prefocal depletion of the pulse energy and laser-induced free-carrier plasma defocusing of the light were considered to be the main causes of the unlocalized dissipation of light energy. Here, we consider whether the delocalization could be significantly reduced by using longer wavelengths, at which the role of 1 PA and 2 PA decreases and higher orders of nonlinearity come into play. We numerically simulate propagation of focused femtosecond pulses at a wavelength of 1.2-5.25 μm. Plasma defocusing was found to be the crucial delocalization mechanism that prevents the enhancement of material excitation, even in the five-photon absorption region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.