: Interactions of mantle silicates with subducted carbonates, sulfides, and sulfur-rich fluids are experimentally simulated in the olivine-ankerite-sulfur and olivine-ankerite-pyrite systems using a multi-anvil high-pressure split-sphere apparatus at 6.3 GPa and range of 1050–1550 °C. Recrystallization of Fe,Ni-bearing olivine and ankerite in a sulfur melt was found to be accompanied by sulfidation of olivine and carbonate, involving partial extraction of metals, carbon, and oxygen into the melt, followed by the formation of pyrite (±pyrrhotite), diopside, and Fe-free carbonates. The main features of metasomatic alteration of Fe,Ni-olivine by a reduced sulfur fluid include: (i) a zonal structure of crystals (Fe-rich core, Mg-rich rim); (ii) inclusions of pyrite and pyrrhotite in olivine; (iii) certain Raman spectral characteristics of olivine. At T > 1350 °C, two immiscible melts, a predominantly sulfur melt with dissolved components (or a Fe–Ni–S–O melt) and a predominantly carbonate one, are generated. The redox interaction of these melts leads to the formation of metastable graphite (1350–1550 °C) and diamond growth (1550 °C). The studied olivine-ankerite-sulfur and olivine-ankerite-pyrite interactions may be considered as the basis for simulation of metasomatic processes accompanied by the formation of mantle sulfides during subduction of crustal material to the silicate mantle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.