The inadequate treatments given to the served waste water which are disposal to the rivers and sea coast are the major sources of faecal Microorganisms and enteric bacterial pathogens. They are among the most serious effects of water pollution bringing risks on public health. None of the current methods for detection of pathogens offer real-time on site solutions, are capable of delivering a simple visual detection signal, or can be easily instrumented as an indicator of the presence of a pathogen in water. The use of lipid vesicles incorporating Polydiacetylenes (PDAs) for the development of biosensors for "real-time" detection of pathogens has become an alternative, due to its potential for simple colorimetric response against harmful environmental effectors. However, its actual application in the field has been complicated because lipid vesicles are unable to respond specifically to environmental changes. In this paper, we report several experimental trials leading to improved response in the detection of flagellated pathogens in drinking water. Chromatic biomimetic membranes of TRCDA/DMPC and TRCDA/DMPC/Tryptophan were used in agar and liquid media, which were challenged with different amounts of Escherichia coli and Salmonella typhimurium. In addition, the effect of some divalent cations on the interaction with vesicles TRCDA/DMPC was investigated. The results indicated an improvement in the response times, both visually and quantitatively, through the use of TRIS-EDTA and proper growing conditions for E. coli and Salmonella. With the application of both conditions, it was possible by incubation at 35ºC to promote bacterial growth, therefore avoiding a dramatic effect on the colour change over control samples which may invalidate the test. Our experiments indicated that the minimum bacterial concentration necessary to produce the transition from blue to red on the vesicles as biosensor approaches 10 8 CFU/ml within 4 hrs, faster than traditional methods such as MPN or plate count agar.We present here incubations of samples of contaminated water at 35ºC, in agar plates containing chromatic biomimetic membranes of TRCDA/DMPC. A measurable colour transition is obtained within a reaction time of four hrs, which compares favourably with detection times between seven to 24 hrs corresponding to available tests.
Biochemical oxygen demand (BOD) is a measure of the amount of dissolved oxygen that is required for the biochemical oxidation of the organic compounds in 5 days. New biosensor-based methods have been conducted for a faster determination of BOD. In this study, a mathematical model to evaluate the feasibility of using a BOD sensor, based on disposable alginate-entrapped bacteria, for monitoring BOD in situ was applied. The model considers the influences of alginate bead size and bacterial concentration. The disposable biosensor can be adapted according to specific requirements depending on the organic load contained in the wastewater. Using Klein and Washausen parameter in a Lineweaver-Burk plot, the glucose diffusivity was calculated in 6.4 × 10(-10) (m2/s) for beads of 1 mm in diameter and slight diffusion restrictions were observed (n = 0.85). Experimental results showed a correlation (p < 0.05) between the respirometric peak and the standard BOD test. The biosensor response was representative of BOD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.