Thermodynamic properties of condensed hydrogen in geometric confinement remain poorly understood. Here, we use relaxation calorimetry to study solidification and melting of H2 in a series of Vycor-type nanoporous silica glasses with interconnected pores with average diameters in a wide range of ∼100-3000 Å. We find that the depression of freezing and melting temperatures for this quantum system follows the classical Gibbs-Thomson-like behavior, scaling inversely with the pore size when correlated to pore diameters measured directly by electron microscopy, rather than conventional gas sorption techniques. The shapes of pore size distributions derived from hydrogen thermoporometry are, however, more complex than those measured by gas sorption. The ratio between temperatures of the depression of freezing and melting suggests that the actual pore geometry in Vycor-type nanoporous glasses deviates from cylindrical.
A relaxation calorimeter for measuring the heat capacity of hydrogen isotopes in nanoporous solids is described. Apparatus' features include (i) cooling by a pulse tube refrigerator, (ii) a modular design, allowing for rapid reconfiguration and sample turn around, (iii) a thermal stability of ≲1 mK, and (iv) a bottom temperature of ~5 K. The calorimeter is tested on effective heat capacity measurements of H2 in Vycor (silica) nanoporous glass, yielding a very detailed pore size distribution analysis with an effectively sub-Angstrom resolution.
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H2 and D2 in an ∼85%-porous base-catalyzed silica aerogel. We find that liquid–solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ∼4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H2 and D2 confined inside the aerogel monolith. Results for H2 and D2 are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.
Triboelectrification has been studied for over 2500 years, yet there is still a lack of fundamental understanding as to its origin. Given its utility in areas such as xerography, powder spray painting, and energy harvesting, many devices have been made to investigate triboelectrification at many length-scales, though few seek to additionally make use of triboluminescence: the emission of electromagnetic radiation immediately following a charge separation event. As devices for measuring triboelectrification became smaller and smaller, now measuring down to the atomic scale with atomic force microscope based designs, an appreciation for the collective and multi-scale nature of triboelectrification has perhaps abated. Consider that the energy required to move a unit charge is very large compared to a van der Waals interaction, yet peeling Scotch tape (whose adhesion is derived from van der Waals forces) can provide strong enough energy-focusing to generate X-ray emission. This paper presents a device to press approximately cm-sized materials together in a vacuum, with in situ alignment. Residual surface charge, force, and position and X-ray, visible light, and RF emission are measured for single crystal samples. Charge is therefore tracked throughout the charging and discharging processes, resulting in a more complete picture of triboelectrification, with controllable and measurable environmental influence. Macroscale charging is directly measured, whilst triboluminescence, originating in atomic-scale processes, probes the microscale. The apparatus was built with the goal of obtaining an ab initio-level explanation of triboelectrification for well-defined materials, at the micro- and macro-scale, which has eluded scientists for millennia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.