Background-Previousstudies have failed to identify manometric patterns of gastrointestinal motor activity that can distinguish dyspepsia from health. Aims-To test the hypothesis that the combined use of prolonged, ambulatory, antrojejunal manometry and computer aided analysis in patients selected for the severity of their symptoms could reveal new insights into gastrointestinal motor activity in patients with severe motilitylike dyspesia Methods-Twenty four hour antrojejunal ambulatory manometry was performed in 14 patients and 10 healthy volunteers. Parameters characterising digestive and fasted motility were obtained by a validated computer program and visual analysis. Scoring systems quantified the degree of dysmotility as well as the severity of symptoms. Gastric emptying times were measured in each patient. Results-There was a high prevalence of antral and jejunal dysmotility both during the interdigestive period (71% of patients) and in the postprandial period (78%). During the interdigestive period there was a reduced incidence of antral and jejunal phases, a larger contribution of phase 2 during migrating motor complex cycles, and aberrant configuration of jejunal phase 3 in 29% of patients. Postprandially, the most frequent finding was antral (29% of patients) or jejunal (29%) hypomotility or hypermotility. Minute rhythm was present both during the postprandial (29% of patients) and the interdigestive period (21%). There was no positive correlation between symptom scores, gastric half emptying times, or motility scores. Conclusion-Even with the use of prolonged recordings and advanced computer aided analysis, it is not possible to identify a specific motor pattern which can discriminate patients with severe motility-like dyspepsia from those with other diseases or even healthy individuals. Clinical symptoms or gastric half emptying times are poor predictors of gastrointestinal dysmotility in patients with functional dyspepsia. (Gut 1998;42:235-242)
Nicotiana tabacum leaves are covered by trichomes involved in the secretion of large amounts of secondary metabolites, some of which play a major role in plant defense. However, little is known about the metabolic pathways that operate in these structures. We undertook a proteomic analysis of N. tabacum trichomes in order to identify their protein complement. Efficient trichome isolation was obtained by abrading frozen leaves. After homogenization, soluble proteins and a microsomal fraction were prepared by centrifugation. Gel-based and gel-free proteomic analyses were then performed. 2-DE analysis of soluble proteins led to the identification of 1373 protein spots, which were digested and analyzed by MS/MS, leading to 680 unique identifications. Both soluble proteins and microsomal fraction were analyzed by LC MALDI-MS/MS after trypsin digestion, leading to 858 identifications, many of which had not been identified after 2-DE, indicating that the two methods complement each other. Many enzymes putatively involved in secondary metabolism were identified, including enzymes involved in the synthesis of terpenoid precursors and in acyl sugar production. Several transporters were also identified, some of which might be involved in secondary metabolite transport. Various (a)biotic stress response proteins were also detected, supporting the role of trichomes in plant defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.