The basis pursuit problem seeks a minimum one-norm solution of an underdetermined least-squares problem. Basis pursuit denoise (BPDN) fits the least-squares problem only approximately, and a single parameter determines a curve that traces the optimal trade-off between the least-squares fit and the one-norm of the solution. We prove that this curve is convex and continuously differentiable over all points of interest, and show that it gives an explicit relationship to two other optimization problems closely related to BPDN. We describe a root-finding algorithm for finding arbitrary points on this curve; the algorithm is suitable for problems that are large scale and for those that are in the complex domain. At each iteration, a spectral gradient-projection method approximately minimizes a least-squares problem with an explicit one-norm constraint. Only matrix-vector operations are required. The primal-dual solution of this problem gives function and derivative information needed for the root-finding method. Numerical experiments on a comprehensive set of test problems demonstrate that the method scales well to large problems.
We introduce a new estimator for the vector of coefficients β in the linear model y = Xβ + z, where X has dimensions n × p with p possibly larger than n. SLOPE, short for Sorted L-One Penalized Estimation, is the solution to minb∈ℝp12‖y−Xb‖ℓ22+λ1false|bfalse|false(1false)+λ2false|bfalse|false(2false)+⋯+λpfalse|bfalse|false(pfalse),where λ1 ≥ λ2 ≥ … ≥ λp ≥ 0 and false|bfalse|false(1false)≥false|bfalse|false(2false)≥⋯≥false|bfalse|false(pfalse) are the decreasing absolute values of the entries of b. This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical ℓ1 procedures such as the Lasso. Here, the regularizer is a sorted ℓ1 norm, which penalizes the regression coefficients according to their rank: the higher the rank—that is, stronger the signal—the larger the penalty. This is similar to the Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289–300] procedure (BH) which compares more significant p-values with more stringent thresholds. One notable choice of the sequence {λi} is given by the BH critical values λBHfalse(ifalse)=zfalse(1−i⋅q/2pfalse), where q ∈ (0, 1) and z(α) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λBH provably controls FDR at level q. Moreover, it also appears to have appreciable inferential properties under more general designs X while having substantial power, as demonstrated in a series of experiments running on both simulated and real data.
In this paper we develop a theory of matrix completion for the extreme case of noisy 1-bit observations. Instead of observing a subset of the real-valued entries of a matrix M , we obtain a small number of binary (1-bit) measurements generated according to a probability distribution determined by the realvalued entries of M . The central question we ask is whether or not it is possible to obtain an accurate estimate of M from this data. In general this would seem impossible, but we show that the maximum likelihood estimate under a suitable constraint returns an accurate estimate of M when M ∞ ≤ α and rank(M ) ≤ r. If the log-likelihood is a concave function (e.g., the logistic or probit observation models), then we can obtain this maximum likelihood estimate by optimizing a convex program. In addition, we also show that if instead of recovering M we simply wish to obtain an estimate of the distribution generating the 1-bit measurements, then we can eliminate the requirement that M ∞ ≤ α. For both cases, we provide lower bounds showing that these estimates are near-optimal. We conclude with a suite of experiments that both verify the implications of our theorems as well as illustrate some of the practical applications of 1-bit matrix completion. In particular, we compare our program to standard matrix completion methods on movie rating data in which users submit ratings from 1 to 5. In order to use our program, we quantize this data to a single bit, but we allow the standard matrix completion program to have access to the original ratings (from 1 to 5). Surprisingly, the approach based on binary data performs significantly better.
The use of convex optimization for the recovery of sparse signals from incomplete or compressed data is now common practice. Motivated by the success of basis pursuit in recovering sparse vectors, new formulations have been proposed that take advantage of different types of sparsity. In this paper we propose an efficient algorithm for solving a general class of sparsifying formulations. For several common types of sparsity we provide applications, along with details on how to apply the algorithm, and experimental results.
Secondary school level quantum physics (QP) courses have recently been implemented in the national curricula of many countries. QP gives opportunities to acquaint students with more recent physics and its applications and to discuss aspects of the nature of science. Research has shown that QP is a challenging area for students. Because the inclusion of QP in national curricula is rather new in most countries, it is interesting to compare QP curricula from these countries to make the choices by curriculum designers visible. In this study, we provide a detailed overview of QP courses from fifteen countries. We collected and analyzed official curriculum documents to identify key items present in most curricula. Our inventory identifies a shared current core curriculum of QP which contains the following seven main categories: discrete atomic energy levels, interactions between light and matter, wave-particle duality, de Broglie wavelength, technical applications, Heisenberg's uncertainty principle, and the probabilistic nature of QP. We also found differences in the focus of the listed topics of certain countries, which indicate different views on teaching QP and might inspire curriculum designers struggling with QP. For instance, challenging items like QP interpretations or epistemological aspects of QP are taught only in a few countries. Although research suggests that epistemological aspects help students to comprehend novel QP concepts, many countries do not explicitly include these in the curriculum. We provide reasons and suggestions for this.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.