Accurate diagnosis of intracranial hemorrhage represents a frequent challenge for the practicing radiologist. The purpose of this article is to provide the reader with a synoptic overview of the imaging characteristics of intracranial hemorrhage, using text, tables, and figures to illustrate time-dependent changes. We examine the underlying physical, biological, and biochemical factors of evolving hematoma and correlate them with the aspect on cross-sectional imaging techniques. On CT scanning, the appearance of intracranial blood is determined by density changes which occur over time, reflecting clot formation, clot retraction, clot lysis and, eventually, tissue loss. However, MRI has become the technique of choice for assessing the age of an intracranial hemorrhage. On MRI the signal intensity of intracranial hemorrhage is much more complex and is influenced by multiple variables including: (a) age, location, and size of the lesion; (b) technical factors (e.g., sequence type and parameters, field strength); and (c) biological factors (e.g., pO2, arterial vs. venous origin, tissue pH, protein concentration, presence of a blood-brain barrier, condition of the patient). We discuss the intrinsic magnetic properties of sequential hemoglobin degradation products. The differences in evolution between extra- and intracerebral hemorrhages are addressed and illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.