Starting with the Navier-Stokes equations, a system of equations is obtained to describe quasi-one-dimensional behavior of fluid in a compliant tube. The nonlinear terms which cannot be shown to be small in the original equations are retained, and the resulting equations are nonlinear. A functional pressure-area relationship is postulated and the final set of equations are quasi-linear and hyperbolic, with two independent and two dependent variables. A method of numerical solution of the set of equations is indicated, and the application to cases of interest is discussed.
This paper describes techniques that can be used to transform PDEs with variable coefficients into equations with constant coefficients. The techniques are illustrated by calculating shear flows over quite general surfaces, by solving the signaling problem for diffusive processes in inhomogeneous materials, and by solving the signaling problem for acoustical waves when the sound speed varies with distance. The techniques may also be used to solve equations governing processes in inhomogeneous, anisotropic materials.
The authors report a two-color, colocated quantum dot based imaging system used to take multicolor images using a single focal plane array (FPA). The dots-in-a-well (DWELL) detectors consist of an active region composed of InAs quantum dots embedded in In.15Ga.85As quantum wells. DWELL samples were grown using molecular beam epitaxy and fabricated into 320×256 focal plane arrays with indium bumps. The FPA was then hybridized to an Indigo ISC9705 readout circuit and tested. Calibrated blackbody measurements at a device temperature of 77K yield midwave infrared and long wave infrared noise equivalent difference in temperature of ∼55 and 70mK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.