BackgroundMajor depression is more prevalent in women than in men. The underlying neurobiological mechanisms are not well understood, but recent data shows that hippocampal volume reductions in depressed women occur only when depression is preceded by an early life stressor. This underlines the potential importance of early life stress, at least in women, for the vulnerability to develop depression. Perinatal stress exposure in rodents affects critical periods of brain development that persistently alter structural, emotional and neuroendocrine parameters in adult offspring. Moreover, stress inhibits adult hippocampal neurogenesis, a form of structural plasticity that has been implicated a.o. in antidepressant action and is highly abundant early postnatally. We here tested the hypothesis that early life stress differentially affects hippocampal structural plasticity in female versus male offspring.Principal FindingsWe show that 24 h of maternal deprivation (MD) at PND3 affects hippocampal structural plasticity at PND21 in a sex-dependent manner. Neurogenesis was significantly increased in male but decreased in female offspring after MD. Since no other structural changes were found in granule cell layer volume, newborn cell survival or proliferation rate, astrocyte number or gliogenesis, this indicates that MD elicits specific changes in subsets of differentiating cells and differentially affects immature neurons. The MD induced sex-specific effects on neurogenesis cannot be explained by differences in maternal care.ConclusionsOur data shows that early environment has a critical influence on establishing sex differences in neural plasticity and supports the concept that the setpoint for neurogenesis may be determined during perinatal life. It is tempting to speculate that a reduced level of neurogenesis, secondary to early stress exposure, may contribute to maladaptation of the HPA axis and possibly to the increased vulnerability of women to stress-related disorders.
Opisthobranchia have experienced an unsettled taxonomic history. At the moment their taxonomy is in state of dramatic flux as recent phylogenetic studies have revealed traditional Opisthobranchia to be paraphyletic or even polyphyletic, allocating some traditional opisthobranch taxa to other groups of Heterobranchia, e.g. Pulmonata. Here we review the history of Opisthobranchia and their subgroups, explain their traditionally proposed relationships, and outline the most recent phylogenetic analyses based on various methods (morphology, single gene and multiple gene analyses, as well as genomic data). We also present a phylogenetic hypothesis on Heterobranchia that, according to the latest results, represents a consensus and is the most probable one available to date. The proposed phylogeny supports the Acteonoidea outside of monophyletic Euthyneura, the basal euthyneuran split into Nudipleura (Nudibranchia plus Pleurobranchoidea) and the recently established taxon Tectipleura. The latter divides into the Euopisthobranchia, containing most of the major traditional opisthobranch clades, and the Panpulmonata, with a mix of the former opisthobranch, putative allogastropod and pulmonate taxa. This "new euthyneuran tree" rejects the traditional taxa Opisthobranchia and Pulmonata, and, in particular, has profound implications for preconceived textbook scenarios of opisthobranch and pulmonate evolution, which must now be reconsidered. In the absence of systematic barriers, research communities-which have traditionally investigated marine and non-marine heterobranchs separately-need to interact and finally merge for the sake of science.
Major depressive disorder (MDD) is a psychiatric disorder that is characterized -amongst others- by persistent depressed mood, loss of interest and pleasure and psychomotor retardation. Environmental circumstances have proven to influence the aetiology of the disease, but MDD also has an estimated 40% heritability, probably with a polygenic background. In 2009, a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. A non-synonymous coding single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became only nominally significant after post-hoc analysis with an Australian cohort which used similar ascertainment. The absence of genome-wide significance may be caused by low SNP coverage of genes. To increase SNP coverage to 100% for common variants (m.a.f.>0.1, r2>0.8), we selected seven genes from the GAIN-MDD GWAS: PCLO, GZMK, ANPEP, AFAP1L1, ST3GAL6, FGF14 and PTK2B. We genotyped 349 SNPs and obtained the lowest P-value for rs2715147 in PCLO at P = 6.8E−7. We imputed, filling in missing genotypes, after which rs2715147 and rs2715148 showed the lowest P-value at P = 1.2E−6. When we created a haplotype of these SNPs together with the non-synonymous coding SNP rs2522833, the P-value decreased to P = 9.9E−7 but was not genome wide significant. Although our study did not identify a more strongly associated variant, the results for PCLO suggest that the causal variant is in high LD with rs2715147, rs2715148 and rs2522833.
Major depressive disorder (MDD) is a psychiatric disorder, characterized by periods of low mood of more than two weeks, loss of interest in normally enjoyable activities and behavioral changes. MDD is a complex disorder and does not have a single genetic cause. In 2009 a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. Many of the top signals of this GWAS mapped to a region spanning the gene PCLO, and the non-synonymous coding single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became genome wide significant after post-hoc analysis. We performed resequencing of PCLO, GRM7, and SLC6A4 in 50 control samples from the GAIN-MDD cohort, to detect new genomic variants. Subsequently, we genotyped these variants in the entire GAIN-MDD cohort and performed association analysis to investigate if rs2522833 is the causal variant or simply in linkage disequilibrium with a more associated variant. GRM7 and SLC6A4 are both candidate genes for MDD from literature. We aimed to gather more evidence that rs2522833 is indeed the causal variant in the GAIN-MDD cohort or to find a previously undetected common variant in either PCLO, GRM7, or SLC6A4 with a higher association in this cohort. After next generation sequencing and association analysis we excluded the possibility of an undetected common variant to be more associated. For neither PCLO nor GRM7 we found a more associated variant. For SLC6A4, we found a new SNP that showed a lower P-value (P = 0.07) than in the GAIN-MDD GWAS (P = 0.09). However, no evidence for genome-wide significance was found. Although we did not take into account rare variants, we conclude that our results provide further support for the hypothesis that the non-synonymous coding SNP rs2522833 in the PCLO gene is indeed likely to be the causal variant in the GAIN-MDD cohort.
The drug efflux transporter permeability glycoprotein (PGP) and cytochrome P450 (CYP) 2C19 are important for eliminating antidepressants from the brain and body. The ABCB1 gene, encoding for PGP, and CYP2C19 gene have several variants that could influence enzyme function and thereby the effect of PGP- and 2C19-dependent antidepressants. We investigated the association of antidepressant side effect and common genetic variation in 789 antidepressant users. In PGP-dependent antidepressant users, the A-allele of the rs2032588 single-nucleotide polymorphism (SNP) was associated with a lower number of side effects after adjusting for gender, age, dosage and duration of use, (B=-0.44, q=4.6 × 10(-3)). This association was different from and absent in non-PGP-dependent antidepressant users. Other SNP associations as well as an interaction analysis between the rs2032588 SNP and the CYP2C19 SNPs were not statistically significant after adjusting for covariates and multiple comparisons. The association of rs2032588 with antidepressant side effects suggests the involvement of the ABCB1 genotype in the clinical pharmacology of PGP-dependent antidepressants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.