Optical control of memristors opens the route to new applications in optoelectronic switching and neuromorphic computing. Motivated by the need for reversible and latched optical switching we report on the development of a memristor with electronic properties tunable and switchable by wavelength and polarization specific light. The device consists of an optically active azobenzene polymer, poly(disperse red 1 acrylate), overlaying a forest of vertically aligned ZnO nanorods. Illumination induces trans-cis isomerization of the azobenzene molecules, which expands or contracts the polymer layer and alters the resistance of the off/on states, their ratio and retention time. The reversible optical effect enables dynamic control of a memristor's learning properties including control of synaptic potentiation and depression, optical switching between short-term and long-term memory and optical modulation of the synaptic efficacy via spike timing dependent plasticity. The work opens the route to the dynamic patterning of memristor networks both spatially and temporally by light, thus allowing the development of new optically reconfigurable neural networks and adaptive electronic circuits.
Titanium dioxide nanorods coated with phosphonate ligands with photoreactive coumarin in a terminal position were prepared. These nanorods form liquid crystalline solutions at high concentrations. Relatively high dielectric constant thin films were prepared from the solution-processable and photocrosslinkable hybrid inorganic/organic titanium dioxide nanorods.
An optical memristor where the electrical resistance memory depends on the history of both the current flowing through the device and the irradiance of incident light onto it is demonstrated. It is based on a nanocomposite consisting of functionalized gold nanoparticles in an optically active azobenzene polymer matrix. The composite has an extremely low percolation threshold of 0.04% by volume for conductivity because of the aggregation of the conducting nanoparticles into filamentary nanochannels. Optical irradiation results in photomechanical switching through expansion of the thin film from above to below the percolation threshold, giving a large LOW/HIGH resistance ratio of 10 3 . The device acts as an artificial synapse, the conductivity or plasticity of which can be independently modulated, either electrically or optically, to enable tunable and reconfigurable synaptic circuits for brain-inspired artificial intelligent or visual memory arrays. The lifetime of the resistive-memory states is also optically controllable, which enables spatial modulation of long-and short-term memory.
In this work, we present symmetric metal-insulator-metal bipolar memristors based on room-temperature deposition of charged titanium-oxide nanoparticles formed in vacuum by a physical process. One of the most striking features of these devices is that they do not require a forming step, which is to be related to protrusions of the top electrode material inside the intrinsically porous nanoparticle films. Furthermore, we report that deposition under substrate biasing conditions strongly affects the structural and electrical properties of the produced titanium oxide nanoparticle films including their bipolar switching behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.