In a three-year study, mite populations were monitored in two vineyards, each having two grape varieties with different leaf hair density. In both vineyards native phytoseiids were present: Amblyseius andersoni in one vineyard, and Phytoseius finitimus in the other. The economically important predators Kampimodromus aberrans and Typhlodromus pyri were released in both vineyards in order to study their efficacy in controlling tetranychids and eriophyids and their persistence during periods of prey scarcity. In both vineyards, relative abundances of the mite species, especially phytoseiids, were found to differ on different varieties in the same vineyard. In the first experiment, A. andersoni reached higher densities and was more persistent on the variety with slightly pubescent leaf under-surface (Merlot). Typhlodromus pyri and K. aberrans releases were successful and the mites became more abundant on the variety with pubescent leaf under-surface (Verduzzo). In the second experiment, P. finitimus was more abundant on a variety with pubescent leaf under-surface (Prosecco) than with glabrous leaf under-surface (Riesling). The most interesting results of the present study concerned the interactions between native and released predators. In the first vineyard, different results were obtained when releasing T. pyri on the two varieties. On the variety with pubescent leaves, A. andersoni was rapidly displaced by T. pyri, whereas the former species persisted on the other variety throughout the three-year study, apparently becoming dominant during the last season. In contrast to T. pyri, interactions between K. aberrans and A. andersoni in this vineyard did not depend on variety. The results of the experiments carried out in the second vineyard stressed the importance of interspecific competition for phytoseiid releases. Typhlodromus pyri colonization failed on both varieties. Kampimodromus aberrans releases appeared to be more successful on Riesling than on Prosecco; where P. finitimus was more abundant. At the end of the experiments, K. aberrans displaced P. finitimus on both varieties.
ear-marked (by sex and family) marmots were released in two separate areas (20 ind./ year/area). In summer 2008 the populations produced 36 and 39 individuals, respectively; the animals born in the areas exceeded the number of released animals that survived. Only one pair bred successfully in the year of release; 87.5% of the surviving pairs bred the following year, including the pair breeding the previous year. We recorded the reproduction of a single female, and the acceptance of the litter by the male who later joined her. Mortality of the animals released in 2006 was 39% before the first winter and increased to 53.6% after the second summer. The first summer mortality of animals released in 2007 was higher, probably because of greater predation by golden eagles. The population density increased in late summer 2008 to 13.5 and 22.2 family units/100 ha, respectively in the two areas. In 2006, when both areas were uninhabited, the mean dispersion distance from the release site to settlement sites was greater in males than in females. Sixty-one per cent of the settlements consisted of pairs; 33%, a single male; and 6%, of a trio (marmots from different families). The single males settled more distantly than paired males. Of all the possible "same-family composed " pairs, 77.6% occurred.
Hoverflies (Diptera: Syrphidae) and bees (Hymenoptera: Anthophila) are two key taxa for plant pollination. In the present research, the altitudinal distribution of these taxa was studied along two gradients (elevation range: 780–2130 m) in the Dolomiti Bellunesi National Park (Northeastern Italy). Pan traps were used as a sampling device to collect both hoverflies and bees. Other than altitude, the effect of landscape complexity and plant diversity were considered as potential predictors of hoverfly and bee richness and abundance along the two gradients. A total of 68 species of hoverflies and 67 of bees were collected during one sampling year, confirming the efficacy of pan traps as a sampling device to study these taxa. Altitude was the main variable affecting both hoverfly and bee distribution. The two taxa show different distribution patterns: hoverflies have a unimodal distribution (richness and abundance) with peak at middle altitude (1500 m), while bees have a monotonic decline (richness and abundance) with increasing altitude. Both hoverfly and bee populations change with the increasing altitude, but the change in hoverflies is more pronounced than in bees. Species turnover dominates the β-diversity both for hoverflies and bees; therefore, the hoverfly and bee communities at higher altitudes are not subsamples of species at lower altitude but are characterized by different species. This poses important conservation consequences. Some rare species, typical of an alpine habitat were recorded; the present research represents important baseline data to plan a monitoring scheme aimed at evaluating the effect of climate change on pollinators in these fragile habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.