Physical and biological variables affecting juvenile Pacific herring (Clupea pallasi) in Prince William Sound (PWS) from 1995 to 1998 were investigated as part of a multifaceted study of recruitment, the Sound Ecosystem Assessment (SEA) program. Though more herring larvae were retained in eastern PWS bays, ages‐0 and ‐1 herring used bays throughout PWS as nursery areas. Water transported into PWS from the Gulf of Alaska (GOA) contributed oceanic prey species to neritic habitats. Consequently, variations in local food availability resulted in different diets and growth rates of herring among bays. Summer food availability and possible interspecific competition for food in nursery areas affected the autumn nutritional status and juvenile whole body energy content (WBEC), which differed among bays. The WBEC of age‐0 herring in autumn was related to over‐winter survival. The limited amount of food consumption in winter was not sufficient to meet metabolic needs. The smallest age‐0 fish were most at risk of starvation in winter. Autumn WBEC of herring and winter water temperature were used to model over‐winter mortality of age‐0 herring. Differences in feeding and energetics among nursery areas indicated that habitat quality and age‐0 survival were varied among areas and years. These conditions were measured by temperature, zooplankton abundance, size of juvenile herring, diet energy, energy source (GOA vs. neritic zooplankton), WBEC, and within‐bay competition.
Based on acoustic data taken at night and vertically stratified by bottom depth (3–110 m only), the total number (± 95% CI) of pelagic fishes in Lake Michigan was 43.4 ± 10.1 × 109 or 226.0 ± 55.2 kt in spring (mean density 0.7–3.8 fish∙m−2 or 1.6–12.8 g∙m−2) and 115.8 ± 18.3 × 109 or 313.2 ± 74.3 kt in late summer, 1987 (mean density 1.1–7.9 fish∙m−2 or 3.0–13.2 g∙m−2); approximately 30% of this increase in numbers (35% of biomass) occurred within Green Bay. Abundance estimates from horizontally stratified (by water column depth) data were within 9–11% of vertically stratified estimates during spring but over 20% higher during summer. By extrapolation to all water depths, we estimated total pelagic biomass as 274.6 kt for spring and 410.8 kt for summer. During both seasons, smaller fishes were nearer to the surface and nearer shore than larger individuals, and acoustic measures of size approximated the sizes of fishes caught in trawls. Bioenergetic model simulations suggest that 60% of the available production of alewife (Alosa pseudoharengus) was either consumed by stocked salmonines (52.9%) or commercially harvested (7.1%) in 1987. Underwater acoustics proved a valuable tool for lakewide assessments of fish abundances in the Great Lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.