Shifting sites of blood cell production during development is common across widely divergent phyla. In zebrafish, like other vertebrates, hematopoietic development has been roughly divided into two waves, termed primitive and definitive. Primitive hematopoiesis is characterized by the generation of embryonic erythrocytes in the intermediate cell mass and a distinct population of macrophages that arises from cephalic mesoderm. Based on previous gene expression studies, definitive hematopoiesis has been suggested to begin with the generation of presumptive hematopoietic stem cells (HSCs) along the dorsal aorta that express c-myb and runx1. Here we show, using a combination of gene expression analyses, prospective isolation approaches,transplantation, and in vivo lineage-tracing experiments, that definitive hematopoiesis initiates through committed erythromyeloid progenitors (EMPs) in the posterior blood island (PBI) that arise independently of HSCs. EMPs isolated by coexpression of fluorescent transgenes driven by the lmo2and gata1 promoters exhibit an immature, blastic morphology and express only erythroid and myeloid genes. Transplanted EMPs home to the PBI,show limited proliferative potential, and do not seed subsequent hematopoietic sites such as the thymus or pronephros. In vivo fate-mapping studies similarly demonstrate that EMPs possess only transient proliferative potential, with differentiated progeny remaining largely within caudal hematopoietic tissue. Additional fate mapping of mesodermal derivatives in mid-somitogenesis embryos suggests that EMPs are born directly in the PBI. These studies provide phenotypic and functional analyses of the first hematopoietic progenitors in the zebrafish embryo and demonstrate that definitive hematopoiesis proceeds through two distinct waves during embryonic development.
Over the past decade, the development of forward genetic approaches in the zebrafish system has provided unprecedented power in understanding the molecular basis of vertebrate blood development. Establishment of cellular and hematological approaches to better understand the biology of resulting blood mutants, however, has lagged behind these efforts. We have recently developed the means to identify zebrafish hematopoietic stem cells (HSCs), transgenic lines to mark hematopoietic precursors and their progeny, and the assays to test these populations functionally. Like other vertebrates, zebrafish demonstrate differential waves of hematopoiesis during embryogenesis. These waves can be visualized directly by fluorescent transgenesis in living embryos. The earliest blood-forming cells in the zebrafish embryo express the scl and lmo2 genes. By directing expression of GFP to early blood precursors using the lmo2 promoter, we have isolated early hematopoietic cells by flow cytometry and tested them functionally by transplantation. Transplantation of lmo2::GFP+ cells isolated from embryos at 14 hours post-fertilization (hpf) resulted in only transient reconstitution of erythrocytes, suggesting that the earliest identifiable blood-forming cells are committed to the erythroid lineage. Later in embryogenesis, lmo2:GFP+ GATA-1:dsRED+ cells are found in the posterior blood island (PBI) from approximately 30–60 hpf. Molecular and functional characterization of these cells suggests that they possess limited myeloid and erythroid, but not lymphoid differentiation potentials. This suggests that committed progenitors with definitive hematopoietic potential arise in the embryo before HSCs can be identified. Additional studies have suggested that the first multipotent HSCs are born later in the zebrafish aorta/gonad/mesonephros (AGM) region. We have visualized putative HSCs in the AGM by their expression of the lmo2 and cd41 transgenes. Using confocal timelapse imaging in living embryos, lmo2::GFP+ cells have been observed to emigrate from the AGM region into circulation. Transplantation studies are underway to test putative HSC populations for repopulation activity. Taken together, our findings suggest that at least three independent waves of blood cell precursors are formed during zebrafish embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.