The significance of memory propagation in controlling the stochastic behavior of partial-discharge phenomena is demonstrated by determination of various conditional amplitude and phaseof-occurrence distributions for both measured and simulated discharge pulses. A system that can be used to measure directly a set of both conditional and unconditional pulse amplitude and phase distributions needed to reveal memory effects and quantify the phase-resolved stochastic properties of partial-discharge pulses, is briefly described. It is argued that not only is an unraveling of memory effects essential in any attempt to understand the physical basis for the observed stochastic behavior of partial-discharge phenomena, but also that the data on conditional distributions provide additional statistical information that may be needed to optimize the reliability of partial-discharge pattern recognition schemes now being considered for use in insulation testing.
A detailed description is given of an electronic stochastic analyzer for use with direct “real-time” measurements of the conditional distributions needed for a complete stochastic characterization of pulsating phenomena that can be represented as random point processes. The measurement system described here is designed to reveal and quantify effects of pulse-to-pulse or phase-to-phase memory propagation. The unraveling of memory effects is required so that the physical basis for observed statistical properties of pulsating phenomena can be understood. The individual unique circuit components that comprise the system and the combinations of these components for various measurements, are thoroughly documented. The system has been applied to the measurement of pulsating partial discharges generated by applying alternating or constant voltage to a discharge gap. Examples are shown of data obtained for conditional and unconditional amplitude, time interval, and phase-of-occurrence distributions of partial-discharge pulses. The results unequivocally show the existence of significant memory effects as indicated, for example, by the observations that the most probable amplitudes and phases-of-occurrence of discharge pulses depend on the amplitudes and/or phases of the preceding pulses. Sources of error and fundamental limitations of the present measurement approach are analyzed. Possible extensions of the method are also discussed.
The stochastic behavior of ac-generated partial-discharge pulses in a point-to-dielectric air gap has been thoroughly characterized from direct measurements of various conditional and unconditional phase-restricted pulse-height and phase-of-occurrence distributions. The results reveal significant pulse-to-pulse and phaseto-phase memory propagation at all gap spacings. The observed memory effects are seen to be important in controlling the initiation and growth probabilities of partial-discharge pulses at any given phase of the applied voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.