For most of the last century, researchers have searched for a muscle contraction-induced factor that mediates some of the exercise effects in other tissues such as the liver and the adipose tissue. It has been called the ‘work stimulus’, the ‘work factor’ or the ‘exercise factor’. In the search for such a factor, a cytokine, IL-6, was found to be produced by contracting muscles and released into the blood. It has been demonstrated that IL-6 has many biological roles such as: (1) induction of lipolysis; (2) suppression of TNF production; (3) stimulation of cortisol production. The IL-6 gene is rapidly activated during exercise, and the activation of this gene is further enhanced when muscle glycogen content is low. In addition, carbohydrate supplementation during exercise has been shown to inhibit the release of IL-6 from contracting muscle. Thus, it is suggested that muscle-derived IL-6 fulfils the criteria of an exercise factor and that such classes of cytokines could be termed ‘myokines’.
Aims/hypothesis: Type 2 diabetes mellitus is characterised by increased plasma NEFA and IL-6 concentrations, and IL-6 increases lipolysis in healthy men. We assessed the adipose tissue hormone-sensitive lipase (HSL) mRNA expression, protein expression and HSL activity in patients with type 2 diabetes mellitus, and determined the effect of IL-6 administration on these measures. Methods: Seven patients with type 2 diabetes mellitus (age 67±4 years, weight 87±7 kg) and six age-and weight-matched individuals visited the laboratory on two occasions. Subcutaneous adipose tissue biopsies and blood samples were obtained prior to and during 3 h of either saline or recombinant human IL-6 infusion. Results: HSL mRNA was reduced (p<0.05) by ∼40% in type 2 diabetes mellitus relative to control subjects, while HSL protein expression showed a tendency to be decreased (35%, p=0.09). HSL activity averaged 8.87±1.25 and 6.91±1.20 nmol min −1 mg −1 protein for control and type 2 diabetic subjects respectively (p<0.05). IL-6 administration increased (p<0.05) HSL mRNA 2-fold at 60 min in both groups, whereas HSL protein and activity were unaffected by IL-6. Plasma insulin was elevated (p<0.05) in patients with type 2 diabetes mellitus at rest and was blunted (p<0.05) during IL-6 infusion in both groups. Plasma glucagon and cortisol were elevated (p<0.05) by IL-6 in both groups. Conclusions/interpretation: Our data demonstrate that basal HSL is decreased in patients with type 2 diabetes mellitus, and this may be a consequence of elevated plasma insulin levels. We have also shown that IL-6 administration increases HSL gene expression, although it exerted no effect on HSL protein and activity. This disparity between mRNA, protein and enzyme activity may be a function either of the marked alterations in the hormonal milieu induced by IL-6 administration and/or of post-transcriptional events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.