We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the HST Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Fourteen of these SNe Ia pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Ten of our new SNe Ia are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zeropoint at the count rates appropriate for very distant SNe Ia. Adding these supernovae improves the best combined constraint on dark energy density, ρ DE (z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat ΛCDM universe, we find Ω Λ = 0.729 +0.014 −0.014 (68% CL including systematic errors). For a flat wCDM model, we measure a constant dark energy equation-of-state parameter w = −1.013 +0.068 −0.073 (68% CL). Curvature is constrained to ∼ 0.7% in the owCDM model and to ∼ 2% in a model in which dark energy is allowed to vary with parameters w 0 and w a . Tightening further the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on HST.The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union ⋆ is less than the mass threshold. We begin by noting that.We can then integrate this probability over all true host masses less than the threshold:⋆ )P (m true ⋆ ) up to a normalization constant found by requiring the integral to be unity when integrating over all possible true masses. P (m true ⋆ ) is estimated from the observed distribution for each type of survey. The SNLS (Sullivan et al. 2010) and SDSS (Lampeitl et al. 2010) host masses were assumed to be representative of untargeted surveys, while the mass distribution in Kelly et al. (2010) was assumed typical of nearby targeted surveys. As these distributions are approximately log-normal, we use this model for P (m true ⋆) using the mean and RMS from the log of the host masses from these surveys (with the average measurement errors subtracted in quadrature), giving log 10 P (m true ⋆ ) = N (µ = 9.88, σ 2 = 0.92 2 ) for untargeted surveys and log 10 P (m true ⋆ ) = N (10.75, 0.66 2 ) for targeted surveys. When host mass measurements are available, P (m obs ⋆ |m true ⋆ ) is also modeled as a log-normal; when no measurement is available, a flat distribution is used.For a supernova from an untargeted survey with no host mass measurement (including supernovae presented in this paper which are not in a cluster), P (m trueis the integral of P (m true ⋆ ) up to the threshold mass: 0.55. Similarly, nearby supernovae from targeted surveys w...
After the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered a significant brightening of the inner region of NGC 2617, we began a ∼ 70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look Active Galactic Nuclei (AGN)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole to be (4 ± 1) × 10 7 M ⊙ . When we crosscorrelate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2 − 3 days) to the NIR (6 − 9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a black hole of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
We combine high redshift Type Ia supernovae from the first 3 years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at > 99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = −0.91 +0.16 −0.20 (stat) +0.07 −0.14 (sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematics covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems.Recently K09 ( §10.2.3) have presented evidence for a strong decrease in β with redshift
Aims. We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Methods. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. Results. A flat ΛCDM cosmological fit to 231 SNLS high redshift type Ia supernovae alone gives Ω M = 0.211 ± 0.034(stat) ± 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of ±0.026 on Ω M . No clear evidence is found for a possible evolution of the slope (β) of the colour-luminosity relation with redshift.
With the advent of large dedicated Type Ia supernova (SN Ia) surveys, K-corrections of SNe Ia and their uncertainties have become especially important in the determination of cosmological parameters. While K-corrections are largely driven by SN Ia broadband colors, it is shown here that the diversity in spectral features of SNe Ia can also be important. For an individual observation, the statistical errors from the inhomogeneity in spectral features range from 0.01 (where the observed and rest-frame filters are aligned) to 0.04 (where the observed and rest-frame filters are misaligned). To minimize the systematic errors caused by an assumed SN Ia spectral energy distribution (SED), we outline a prescription for deriving a mean spectral template time series that incorporates a large and heterogeneous sample of observed spectra. We then remove the effects of broadband colors and measure the remaining uncertainties in the K-corrections associated with the diversity in spectral features. Finally, we present a template spectroscopic sequence near maximum light for further improvement on the K-correction estimate. A library of $600 observed spectra of $100 SNe Ia from heterogeneous sources is used for the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.