This paper focuses on finite minimax problems with many functions, and their solution by means of exponential smoothing. We conduct run-time complexity and rate of convergence analysis of smoothing algorithms and compare them with those of SQP algorithms. We find that smoothing algorithms may have only sublinear rate of convergence, but as shown by our complexity results, their slow rate of convergence may be compensated by small computational work per iteration. We present two smoothing algorithms with active-set strategies and novel precision-parameter adjustment schemes. Numerical results indicate that the algorithms are competitive with other algorithms from the literature, and especially so when a large number of functions are nearly active at stationary points.
Discretization algorithms for semi-infinite minimax problems replace the original problem, containing an infinite number of functions, by an approximation involving a finite number, and then solve the resulting approximate problem. The approximation gives rise to a discretization error, and suboptimal solution of the approximate problem gives rise to an optimization error. Accounting for both discretization and optimization errors, we determine the rate of convergence of discretization algorithms, as a computing budget tends to infinity. We find that the rate of convergence depends on the class of optimization algorithms used to solve the approximate problem as well as the policy for selecting discretization level and number of optimization iterations. We construct optimal policies that achieve the best possible rate of convergence and find that, under certain circumstances, the better rate is obtained by inexpensive gradient methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.