1. Resting potential and current-voltage relation were measured in crayfish giant axons bathed in chloride-free and sodium-free solutions with and without ouabain. 2. Chloride-free solution caused a transient depolarization but did not alter the steady-state membrane potential. Utilizing isethionate as an anion substitute, the membrane resistance increased 12.5%. 3. In the absence of extracellular chloride, ouabain (0.5-1 mM) depolarized the axon 6-7 mV. The shape of the current-voltage relation did not change but the curve was shifted along the current axis. 4. These results indicate that ouabain inhibits a steady-state hyperpolarizing electrogenic pump current of approximately 3 muA/cm2. 5. Extracellular sodium removal from axons equilibrated in chloride-free solutions transiently hyperpolarized the membrane 6-7 mV without a change in membrane resistance. The transient hyperpolarization was ouabain and temperature sensitive. The steady-state potential reached in sodium-free and chloride-free solution was not ouabain sensitive. Temperature sensitivity of the steady-state membrane potential was greatly reduced. 6. The transient hyperpolarization produced by extracellular sodium removal was metabolically driven and may present the expression of a sodium efflux transport current of 7.0-7.5 muA/cm2. 7. Using electrophysiologically measured parameters, sodium and potassium conductance, influx and efflux currents and the coupling ratio for sodium/potassium transport are calculated from a modification of the conductance equation. 8. The sodium/potassium transport coupling ratio for steady-state conditions was estimated at 5:3 (1.67:1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.