A large‐scale international electromagnetic experiment has been carried out in northwest Poland and northeast Germany. The main goal was to study the deep conductivity structure across the Trans‐European Suture Zone, which is the most prominent tectonic structure of Phanerozoic age in Europe. Electromagnetic measurements were carried out mainly along seismic profiles P2, LT‐7, and LT‐2 crossing the suture zone and running in the northeastern direction. Strike and dimensionality analyses indicate that a geo‐electrical strike of N60°W common to both profiles LT‐7 and P2 can be estimated. This strike direction was used to project and rotate all transfer functions and both profiles were subjected to 2D inversion using three different approaches. The results show the presence of highly conductive Cenozoic‐Mesozoic sedimentary cover reaching depths up to 3 km. A significant conductivity anomaly beneath the central part of the TESZ, called the Central Polish Anticlinorium, has been well resolved at mid‐crustal depths. The upper mantle of the Precambrian East European Craton is more resistive than, adjacent to the West, the younger Paleozoic Platform.
Ground‐based technological systems, such as power grids, can be affected by geomagnetically induced currents (GIC) during geomagnetic storms and magnetospheric substorms. This motivates the necessity to numerically simulate and, ultimately, forecast GIC. The prerequisite for the GIC modeling in the region of interest is the simulation of the ground geoelectric field (GEF) in the same region. The modeling of the GEF in its turn requires spatiotemporal specification of the source which generates the GEF, as well as an adequate regional model of the Earth’s electrical conductivity. In this paper, we compare results of the GEF (and ground magnetic field) simulations using three different source models. Two models represent the source as a laterally varying sheet current flowing above the Earth. The first model is constructed using the results of a physics‐based 3‐D magnetohydrodynamic (MHD) simulation of near‐Earth space, the second one uses ground‐based magnetometers’ data and the Spherical Elementary Current Systems (SECS) method. The third model is based on a “plane wave” approximation which assumes that the source is locally laterally uniform. Fennoscandia is chosen as a study region and the simulations are performed for the September 7–8, 2017 geomagnetic storm. We conclude that ground magnetic field perturbations are reproduced more accurately using the source constructed via the SECS method compared to the source obtained on the basis of MHD simulation outputs. We also show that the difference between the GEF modeled using laterally nonuniform source and plane wave approximation is substantial in Fennoscandia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.