Human CNOT6L/CCR4, a member of the endonuclease-exonuclease-phosphatase (EEP) family enzymes, is one of the two deadenylase enzymes in the conserved CCR4-NOT complex. Here, we report inhibitor-bound crystal structures of the human CNOT6L nuclease domain in complex with the nucleotide CMP and the aminoglycoside neomycin. Deadenylase activity assays show that nucleotides are effective inhibitors of both CNOT6L and CNOT7, with AMP more effective than other nucleotides, and that neomycin is a weak deadenylase inhibitor. Structural analysis shows that all inhibitors occupy the substrate and magnesium-binding sites of CNOT6L, suggesting that inhibitors compete with both substrate and divalent magnesium ions for overlapping binding sites.
Exopolyphosphatase (PPX) enzymes degrade inorganic polyphosphate (poly-P), which is essential for the survival of microbial cells in response to external stresses. In this study, a putative exopolyphosphatase from Zymomonas mobilis (ZmPPX) was crystallized. Crystals of the wild-type enzyme diffracted to 3.3 Å resolution and could not be optimized further. The truncation of 29 amino acids from the N-terminus resulted in crystals that diffracted to 1.8 Å resolution. The crystals belonged to space group C2, with unit-cell parameters a = 122.0, b = 47.1, c = 89.5 Å, α = γ = 90, β = 124.5°. An active-site mutant that crystallized in the same space group and with similar unit-cell parameters diffracted to 1.56 Å resolution. One molecule was identified per asymmetric unit. Analytical ultracentrifugation confirmed that ZmPPX forms a dimer in solution. It was confirmed that ZmPPX possesses exopolyphosphatase activity against a synthetic poly-P substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.