A novel electrochemical immunosensing strategy for the detection of atrazine based on magnetic beads is presented. Different coupling strategies for the modification of the magnetic beads with the specific anti-atrazine antibody have been developed. The immunological reaction for the detection of atrazine performed on the magnetic bead is based on a direct competitive assay using a peroxidase (HRP) tracer as the enzymatic label. After the immunochemical reactions, the modified magnetic beads can be easily captured by a magnetosensor made of graphite-epoxy composite, which is also used as the transducer for the electrochemical immunosensing. The electrochemical detection is thus achieved through a suitable substrate and mediator for the enzyme HRP. The electrochemical approach is also compared with a novel magneto-ELISA based on optical detection. The performance of the electrochemical immunosensing strategy based on magnetic beads was successfully evaluated using spiked real orange juice samples. The detection limit for atrazine using the competitive electrochemical magnetoimmunosensing strategy with anti-atrazine-specific antibody covalent coupled with tosyl-activated magnetic beads was found to be 6 x 10(-3) microg L(-1) (0.027 nmol L(-1)). This strategy offers great promise for rapid, simple, cost-effective, and on-site analysis of biological, food, and environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.