Cachexia increases hospitalization costs and length of stay in several cancer types. Identifying the medical burden associated with cancer cachexia will assist in developing an international consensus for recognition and coding by the medical community and ultimately an effective treatment plans for cancer cachexia.
Background:Although a number of monoimmunotherapies and targeted therapies are available to treat BRAF+ advanced melanoma, response rates remain relatively low in the range of 22–53% with progression-free survival (PFS) in the range of 4.8–8.8 months. Recently, combination targeted therapies have improved response rates to about 66–69%, PFS to 11.0–12.6 months and overall survival (OS) to 25.1–25.6 months. While combination immunotherapies have improved response rates of 67 compared with 19–29% with monotherapies and improved PFS of 11.7 compared with 4.4–5.8 months with monotherapies, the OS benefit is yet to be established in phase 3 trials. As healthcare costs continue to rise, US payers have a predominant interest in assessing the value of available treatments. Therefore, a cost-benefit model was developed to evaluate the value of treating BRAF+ advanced melanoma with two combination therapies: nivolumab + ipilimumab (N+I) and dabrafenib + trametinib (D+T).Scope:The model was used to estimate total costs, total costs by expenditure category, cost per month of PFS and cost per responder for the payer, and societal perspectives of treating advanced melanoma patients with the BRAF V600 mutation using combination targeted therapy (D+T) or combination immunotherapy (N+I). The model followed patients from initiation of treatment to the point of progression or death. Deterministic and probabilistic sensitivity analyses were conducted to evaluate the robustness of the results and to understand the dispersion of simulated results.Findings:Based on a hypothetical payer with one million covered lives, it was expected that fourteen metastatic melanoma patients with the BRAF V600 mutation would be treated each year. Cost-benefit with N+I and D+T was simulated from the payer perspective. The cost per month of PFS for N+I was $22,162, while that for D+T was $17,716 (−$4,446 cost difference); the cost per responder for N+I was $388,746 and that for D+T was $282,429 (−$106,316 cost difference). The cost per month of PFS and per responder from the societal perspective resembled the patterns observed from the payer’s perspective: the cost per month of PFS for N+I was $22,843, while that for D+T was $18,283 (−$4,560 cost difference). The cost per responder for N+I was $400,695 and that for D+T was $291,473 (−$109,222 cost difference). The totals of travel and treatment time for N+I and D+T were 58 hours and 3.9 hours per patient, respectively, of which total infusion time for N+I accounted for a majority – 59% – of the 58 hours. Sensitivity analyses indicated that results were most sensitive to model inputs for median PFS, body weight, and drug cost. Moreover, D+T is likely associated with a lower cost per month of PFS and cost per responder than N+I, except at low body weights (less than 57 kg).Conclusion:The model presented in this study was used to analyze the clinical and economic benefit of using combination therapies in advanced melanoma patients with the BRAF V600 mutation. This analysis suggests D+T therapy is associated...
Diabetes is a major risk factor for tendinopathy, and tendon abnormalities are common in diabetic patients. The purpose of the present study was to evaluate the effect of streptozotocin (60 mg/kg)-induced diabetes and insulin therapy on tendon mechanical and cellular properties. Sprague-Dawley rats (n = 40) were divided into the following four groups: nondiabetic (control), 1 wk of diabetes (acute), 10 wk of diabetes (chronic), and 10 wk of diabetes with insulin treatment (insulin). After 10 wk, Achilles tendon and tail fascicle mechanical properties were similar between groups (P > 0.05). Cell density in the Achilles tendon was greater in the chronic group compared with the control and acute groups (control group: 7.8 ± 0.5 cells/100 μm(2), acute group: 8.3 ± 0.4 cells/100 μm(2), chronic group: 10.9 ± 0.9 cells/100 μm(2), and insulin group: 9.2 ± 0.8 cells/100 μm(2), P < 0.05). The density of proliferating cells in the Achilles tendon was greater in the chronic group compared with all other groups (control group: 0.025 ± 0.009 cells/100 μm(2), acute group: 0.019 ± 0.005 cells/100 μm(2), chronic group: 0.067 ± 0.015, and insulin group: 0.004 ± 0.004 cells/100 μm(2), P < 0.05). Patellar tendon collagen content was ∼32% greater in the chronic and acute groups compared with the control or insulin groups (control group: 681 ± 63 μg collagen/mg dry wt, acute group: 938 ± 21 μg collagen/mg dry wt, chronic: 951 ± 52 μg collagen/mg dry wt, and insulin group: 596 ± 84 μg collagen/mg dry wt, P < 0.05). In contrast, patellar tendon hydroxylysyl pyridinoline cross linking and collagen fibril organization were unchanged by diabetes or insulin (P > 0.05). Our findings suggest that 10 wk of streptozotocin-induced diabetes does not alter rat tendon mechanical properties even with an increase in collagen content. Future studies could attempt to further address the mechanisms contributing to the increase in tendon problems noted in diabetic patients, especially since our data suggest that hyperglycemia per se does not alter tendon mechanical properties.
test, Wilcoxon test, Chi-square test) were: number of patients exposed to allogeneic red cells, amount of blood transfusions, and the number of length of stay in hospital. An economic model was quantified the cost saving of EVICEL® in ICH. Results: preliminary results showed that application of EVICEL reduce number of transfused RBC, postoperative haemoglobin loss, and days of hospital stay. In the hospital cost. analysis EVICEL® predicts resource reduction with average cost-savings of € 1.227 per patient. ConClusions: Overall, the results suggest that EVICEL are efficacious in reducing both post-operative blood loss, and hospital stay The protocol with EVICEL® produce clinical appropriateness and important cost savings for hospital.
Non-cystic fibrosis bronchiectasis (NCFBE) is a rare, chronic lung disease characterized by bronchial inflammation and permanent airway dilation. Chronic infections with P. aeruginosa have been linked to higher morbidity and mortality. To understand the impact of P. aeruginosa in NCFBE on health care costs and burden, we assessed healthcare costs and utilization before and after P. aeruginosa diagnosis. Using data from 2007 to 2013 PharMetrics Plus administrative claims, we included patients with ≥2 claims for bronchiectasis and >1 claim for P. aeruginosa; then excluded those with a claim for cystic fibrosis. Patients were indexed at first claim for P. aeruginosa and were required to have >12 months before and after the index P. aeruginosa. The mean differences in utilization and costs were assessed using paired Student's t-tests for statistical significance. Mean total healthcare costs per patient were $36,213 pre-P. aeruginosa diagnosis versus $67,764 post-P. aeruginosa, an increase of 87% (p < 0.0001). Inpatient costs represented the largest proportion of total healthcare costs post-P. aeruginosa (54%) with an increase of four hospitalizations per patient (p < 0.0001). NCFBE patients with evidence of P. aeruginosa incur substantially greater healthcare costs and utilization after P. aeruginosa diagnosis. Future research should explore methods of earlier identification of NCFBE patients with P. aeruginosa, as this may lead to fewer severe exacerbations, thereby resulting in a reduction in hospitalizations and healthcare costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.