This article contains the results of research on the topical problem of highly sensitive express registration of biological objects using field-effect transistors with the surface open for analyte access, which are made based on silicon-on-insulator (SOI) films. The possibilities of dielectrophoretic effects for controlling the concentration of the analyte in the area of sensory elements are considered on the example of the indication of viruses of nuclear polyhedrosis and vaccinia. It is shown that the use of the dielectrophoresis (DEPh) effect makes it possible to solve (1) the key tasks for creating sensor systems: increasing the detecting ability, as well as exrtacting and verifying the signal from the target particles; and (2) the fundamental task: determining the charge state of the analyte in solutions without modifying the sensors' surface. The problems and prospects of the mass application of nanowire (NW) biosensors, including those with the dielectrophoretic effect, in biotechnology, virology, etc., are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.