To meet various application requirements, it is important to enable an improvement of a-C structure and properties, such as hardness, adhesion, and wear resistance. In this study, we used the Raman spectroscopy to investigate the a-C thin films structure dependence on the different deposition parameters. The effect of nitrogen, argon, and hydrogen gas flow rate was analyzed to determine the influence on the film properties. The change in the gas type, combination, and flow had a significant influence on the D and G bands of the a-C Raman spectra. The addition of N2into the chamber promoted the sp2creation, while with adding hydrogen the layer contained more sp3bonds. The depositions of a-C thin films were carried out in pulsed arc discharge vacuum installation. Micro-Raman measurements of the deposited materials were performed using an ISA Dilor-Jobin Yvon-Spex Labram confocal system with 632.8 nm radiation from a He-Ne laser using a back-scattering geometry.
Zdravecká E., Tkáčová J., Ondáč M., 2014. Effect of microstructure factors on abrasion resistance of highstrength steels. Res. Agr. Eng., 60: 115-120.Current development of high strength abrasion resistant steels is mostly oriented on high hardness, martensitic concept following the hypothesis that the abrasion resistance holds a proportional tendency with hardness. The various experimental observations have suggested that the high hardness of martenzite does not guarantee a high abrasion resistance because the brittle nature of martensite can lead to decrease their abrasive wear. The aim of this work was to analyse the influence of microstructure on abrasion resistance of selected high-strength low-alloyed steels used in the industry. The abrasive wear resistance of selected steels was obtained using an ASTM-G65 three-body abrasive wear test, microstructure and wear resistance determination. It was observed that grain refinement is an effective way of enhancing the abrasion resistance. In this context, micro alloyed steels offer an attractive combination of price and performance.
Tailor welded blanks (TWB) represent an anisotropic and non-homogenous material. The knowledge of the mechanical properties and microstructure of the fusion zone and heat-affected zone (HAZ) obtained with laser welding is essential to ensure the reliability of the process. In this paper, laser-welded hot-dip Zn-coated low carbon microalloyed steels with different thickness and mechanical properties were used. The mechanical properties of the laser-welded blanks were determined by tensile tests and formability by Erichsen cupping tests. In addition, the pore formation during the laser welding process was analyzed. The microstructural analysis confirmed the formation of the favorable structure of the weld metal and the heat-affected zone without the presence of martensite. The obtained results showed that it is possible to produce TWBs with suitable mechanical properties by laser welding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.