FePt -TiO 2 exchange coupled composite media with well-isolated columnar microstructure for high density magnetic recording Effect of orientation on the thermal stability in advanced metal particulate tapes Ultra high-density magnetic data storage requires magnetic grains of <5 nm diameters. Thermal stability of such small magnetic grain demands materials with very large magneto-crystalline anisotropy, which makes data write process almost impossible, even when Heat Assisted Magnetic Recording (HAMR) technology is deployed. Here, we propose an alternative method of strengthening the thermal stability of the magnetic grains via elasto-mechanical coupling between the magnetic data storage layer and a piezo-ferroelectric substrate. Using Stoner-Wohlfarth single domain model, we show that the correct tuning of this coupling can increase the effective magnetocrystalline anisotropy of the magnetic grains making them stable beyond the super-paramagnetic limit. However, the effective magnetic anisotropy can also be lowered or even switched off during the write process by simply altering the applied voltage to the substrate. Based on these effects, we propose two magnetic data storage protocols, one of which could potentially replace HAMR technology, with both schemes promising unprecedented increases in the data storage areal density beyond the super-paramagnetic size limit. V C 2014 AIP Publishing LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.