A b s t r a c tThe morphology of fern spores collected from natural sites in Poland was examined under light microscopy. Spore samples represented 44 species in 18 genera and in 13 families. Only spores of Ophioglossaceae were obtained from the herbarium of the Adam Mickiewicz University in Poznań while the remaining samples were obtained from living plants. Spore size ranges between 20 to 75 μm and the spores of Osmunda regalis and Polypodium interjectum were found to have remarkably large dimensions. The spores are ellipsoidal, tetrahedral and spherical/globoid in shape. Their apertures are monolete or trilete types. The exine surface patterns are baculate, cristate, granulate, reticulate, tuberculate and verrucate. Pictures of the analyzed spores are collected in a contrasting (size, colour) table to make it easier to distinguish between species.The peculiar characters of fern spores are described after a review of major articles concerning the allergenic features of fern spores with special attention to Pteridium aquilinum whose spores and vegetative tissues revealed mutagenic and carcinogenic activity.
Haploidisation is a biotechnological method used to obtain plants with improved traits that are of use to humans. Lettuce (Lactuca sativa L.), a well-known and popular leafy vegetable, is consumed worldwide. Its haploid form would provide a good basis for producing a pure line of plants (doubled haploids) allowing new varieties to be regenerated. The main aim of this work was to develop an effective haploidisation method for this economically important species. In order to stimulate the development of haploid embryos of lettuce based on our previous experience, we conducted in vivo distant pollination with fresh pollen grains of Helianthus annuus L. or H. tuberosus L. Because the haploid proembryos obtained after pollination did not develop further (despite the presence of cellular endosperm), we implemented the technique of in vitro culture of an isolated embryo sacs (surrounded by endothelium) with parthenogenetic embryos on various, modified Murashige and Skoog media. During the in vitro culture, we observed the formation of callus tissue and, after subsequent cultures of calluses, 23 haploid L. sativa plants were regenerated. The haploid status of the regenerated plantlets was confirmed by estimation of the genome size by flow cytometry, chromosome counting in root tips, stomata cell size and by disturbances in pollen formation resulting from abnormal microsporogenesis. This paper contains the complete protocol for obtaining haploid plants of L. sativa.
Intergeneric hybridisation between Salix viminalis L. as the female and four Populus species (Populus trichocarpa, P. tremula, P. × canadensis and P. simonii) as male pollen donors was performed by in vitro stigma pollination. To overcome postzygotic barriers, transfer of hybrid embryos to new medium is necessary. We carried out detailed ultrastructural analyses to establish: (i) at which stage of embryo development the first signs of programmed cell death (PCD) could be detected; and (ii) at which stage the lack of serious or irreversible changes guaranteed that advanced development of hybrid plants could occur after embryo rescue. Transmission electron microscopy and confocal laser scanning microscopy revealed the presence of both developing and degenerating embryos. Developing globular, heart-shaped, and early cotyledonary embryos contained cells of correct ultrastructure. The only sign of intergeneric hybridisation was a delay in development for a few days, in comparison with control embryos. The earliest indicators of embryo degeneration were noted at 9 days after pollination (DAP). The most common indicators were excessive embryo vacuolisation, which was characterised by a large number of vesicles and formation of small vacuoles, as well as enlarged central vacuoles. Extended plastid thylakoids, folding of the cell wall, and autophagosomes were observed. Our detailed investigation of PCD in hybrid embryos enabled us to conclude that the embryo rescue technique was most effective in intergeneric willow × poplar crosses if applied between 9 and 16 DAP.
Polypodium vulgare L. is a desiccation-tolerant fern that can withstand successive dry periods in its life cycle. To better understand this mechanism, the current study was undertaken to assess the role of phenolic compounds in rhizome dehydration and determine their localisation in the rhizome cells after enforced dehydration in mannitol solution or controlled desiccation with or without abscisic acid (ABA) pretreatment. Phenolic distribution at the subcellular level was studied using gold particle-complexed laccase. Cells from different tissues: cortical parenchyma, endodermis and stelar elements--pericycle, sieve cells and vascular parenchyma were observed under a transmission electron microscope (TEM). The content of phenolic compounds was greater in ABA-untreated rhizomes after enforced dehydration in mannitol solution and subsequent rehydration. After controlled desiccation the phenolic content significantly increased in ABA-untreated rhizomes. A large number of phenolic compound deposits were present in all types of rhizomatous cells. Phenolics were widely distributed in the vacuoles of all cells, and in the secondary cell walls of sieve cells, although scattered labelling was hardly ever observed in the primary cell walls. In dehydrated and plasmolysed cells from the cortex and endodermis, phenolic compounds were present in the apoplastic compartments between the plasma membranes and the cell walls. There is evidence that abscisic acid plays a role as a crucial antioxidant resulting in no damage and a lower level of phenolic increase as compared to ABA-untreated rhizomes. Moreover, the location of phenolics suggests a protective chemical barrier against environmental stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.