[1] It has recently been found that solar wind dynamic pressure changes can dramatically affect the precipitation of magnetospheric particles on the high-latitude ionosphere. We have examined the effect of large solar wind dynamic pressure increases on the location, size, and intensity of the auroral oval using particle precipitation data from Defense Meteorological Satellite Program (DMSP) spacecraft. Three events have been selected for study during the time period after 1997 when four DMSP spacecraft (F11-F14) were simultaneously operational. Interplanetary magnetic field (IMF) orientation is different from event to event. For each event, we determine equatorward and poleward boundaries of the auroral oval before and after an increase in solar wind pressure. Also, using measured integral fluxes, we construct precipitating particle energy input maps for the auroral oval. All cases studied show a significant change of the auroral oval location, size, and intensity in response to the solar wind pressure pulse. Most prominent are an increase of the auroral zone width and a decrease of the polar cap size when the solar wind dynamic pressure increases under steady southward IMF conditions. An increase in total precipitating particle energy flux is also observed. A smaller response is seen when the IMF B z has a simultaneous northward turning and when it is nearly zero before the pressure enhancement. Our results also point to significant differences between the auroral precipitation response to solar wind pressure changes and its response to isolated substorms, the former inducing a global auroral reaction while the latter is related to more localized premidnight disturbances. Auroral UV observations from the Polar spacecraft during our events are found to give results consistent with the results we get from the precipitating particle observations.
Abstract. We present direct evidence that transient Earthward flow bursts in the magnetotail can produce an observable signature in the optical aurora. This signature is noah-south aligned auroral structures that are extensions of transient intensifications near the poleward boundary of the auroral oval. Our study focuses on the period from 0500 to 0700 UT on January 7, 1997, during which five distinct flow bursts are observed in the Geotail data. At that time, the spacecraft was located approximately 30 RE downtail on field lines that project down to the CANOPUS array of ground based instruments. We find that each of the flow bursts seen in the Geotail data is associated with an auroral poleward boundary intensification (PBI) observed in the CANOPUS meridian scanning photometer (MSP) data, which appears as a noah-south aligned auroral structure in the CANOPUS allsky imager (ASI) data. Based on these observations we estimate that the fast flows originated between 50 and 100 RE downtail.
Abstract. While the formation of equatorial electrojet (EEJ) and its temporal variation is believed to be fairly well understood, the longitudinal variability at all local times is still unknown. This paper presents a case and statistical study of the longitudinal variability of dayside EEJ for all local times using ground-based observations. We found EEJ is stronger in the west American sector and decreases from west to east longitudinal sectors. We also confirm the presence of significant longitudinal difference in the dusk sector pre-reversal drift, using the ion velocity meter (IVM) instrument onboard the C/NOFS satellite, with stronger pre-reversal drift in the west American sector compared to the African sector. Previous satellite observations have shown that the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This study's results raises the question if the vertical drift, which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the American sector and weaker in the African sector -why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?
Abstract. Recent work has shown that solar wind dynamic pressure changes can have a dramatic effect on the particle precipitation in the high-latitude ionosphere. It has also been noted that the preexisting interplanetary magnetic field (IMF) orientation can significantly affect the resulting changes in the size, location, and intensity of the auroral oval. Here we focus on the effect of pressure pulses on the size of the auroral oval. We use particle precipitation data from up to four Defense Meteorological Satellite Program (DMSP) spacecraft and simultaneous POLAR Ultra-Violet Imager (UVI) images to examine three events of solar wind pressure fronts impacting the magnetosphere under two IMF orientations, IMF strongly southward and IMF B z nearly zero before the pressure jump. We show that the amount of change in the oval and polar cap sizes and the local time extent of the change depends strongly on IMF conditions prior to the pressure enhancement. Under steady southward IMF, a remarkable poleward widening of the oval at all magnetic local times and shrinking of the polar cap are observed after the increase in solar wind pressure. When the IMF B z is nearly zero before the pressure pulse, a poleward widening of the oval is observed mostly on the nightside while the dayside remains unchanged. We interpret these differences in terms of enhanced magnetospheric reconnection and convection induced by the pressure change. When the IMF is southward for a long time before the pressure jump, open magnetic flux is accumulated in the tail and strong convection exists in the magnetosphere. The compression results in a great enhancement of reconnection across the tail which, coupled with an increase of magnetospheric convection, leads to a dramatic poleward expansion of the oval at all MLTs (dayside and nightside). For near-zero IMF B z before the pulse the open flux in the tail, available for closing through reconnection, is smaller. This, in combination with the weaker magnetospheric convection, leads to a more limited poleward expansion of the oval, mostly on the nightside.
On January 10, 1997 a strong pressure pulse, observed by the WIND spacecraft between 1030 and 1055 UT, hit the magnetosphere, after about a one-half hour delay, causing the strengthening and widening of the auroral electrojet at all local times. The duration of the electrojet perturbation was the same as the duration of the solar wind pressure pulse. The pulse occurred during the well-studied Jan 10-11, 1997 magnetic storm and during strong geomagnetic activity. We study the effect of the pressure pulse on the ionospheric current, using a global network of more than 100 ground magnetometers, images from the POLAR spacecraft, and solar wind measurements from the WIND and Geotail spacecraft. We find that the magnetospheric and ionospheric response is directly driven by the solar wind conditions and clearly related to the onset, duration and end of the pressure pulse. In addition it appears that the enhancement of the Region 1 currents opposed the effect of the enhancement of the magnetopause current for locations near noon. These responses are not characteristics of a typical substorm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.