Fischer 344 (F344) rats are reportedly 75-fold more sensitive than Sprague Dawley (S-D) rats to 1,2-dichlorobenzene (o-DCB) hepatotoxicity. Lethality studies were conducted since no information was available regarding the ultimate consequence of this sensitivity in terms of animal survival in the two strains. LD50S for o-DCB (1.66 ml/kg and 1.76 ml/kg in male F344 and S-D rats, respectively) did not differ. Several studies have shown the importance of tissue repair on animal survival following exposure to toxic chemicals. The objective of this study was to investigate if differential rates of cell division and tissue repair might explain the lack of difference in LD50 dose between the two strains despite higher hepatotoxic injury in F344 rats. Age-matched male S-D and F344 rats were administered o-DCB (0.2, 0.6, 1.2 ml/kg, i.p.); injury and tissue repair occurring as two dynamic but opposing events were measured over time. Liver injury was assessed by measuring plasma alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) activities and by liver histopathology. Higher plasma ALT elevations were observed in F344 rats following administration of 0.2 and 0.6 ml o-DCB/kg. Using SDH as a marker of liver injury, the strain difference was evident only at 0.2 ml o-DCB/kg. Liver regeneration was estimated by 3H-thymidine incorporation into hepatonuclear DNA and via proliferating cell nuclear antigen (PCNA) assay. Prompt and significantly higher hepatocellular regeneration beginning at 36 h was evident in F344 rats following administration of 0.2 and 0.6 ml o-DCB/kg. The significantly higher depletion of hepatic glycogen observed in F344 rats following administration of 0.2 and 0.6 ml o-DCB/kg occurred without significant changes in plasma glucose and is consistent with highly stimulated tissue repair seen in these rats at the corresponding doses. However, increasing the dose further to 1.2 ml o-DCB/kg results in a delayed (S-phase synthesis begins at 48 h) and diminished response to o-DCB. These findings suggest that a significantly higher rate of tissue repair in F344 rats helps them overcome higher liver injury inflicted by o-DCB. This differential in tissue repair in the two strains may play a vital role in equalizing the ultimate outcome of toxicity in the two strains.
The objective of this study was to compare the molecular, physiological and microbial effects of mushroom powder (MP), vitamin D2 enriched mushroom powder (MPD2) and zinc oxide (ZnO) in pigs post-weaning. Pigs (four pigs/pen; 12 pens/treatment) were assigned to: (1) basal diet (control), (2) basal diet + ZnO, (3) basal diet + MP (2 g/kg feed) and (4) basal diet + MPD2 (2 g/kg feed). Zinc oxide supplementation improved the feed intake (p < 0.001); increased the caecal abundance of Lactobacillus (p < 0.05); increased the villus height (p < 0.05) in the duodenum, jejunum and ileum; increased the expression of chemokine interleukin 8 (CXCL8; p < 0.05); and decreased the expression of pro-inflammatory cytokine gene interleukin 6 (IL6; p < 0.05), tumour necrosis factor (TNF; p < 0.05), nutrient transporters peptide transporter 1 (SLC15A1; p < 0.05) and fatty acid binding protein 2 (FABP2; (p < 0.05) in the duodenum. Whereas dietary supplementation with MPD2 improved the gastrointestinal morphology (p < 0.05); increased the total volatile fatty acid concentrations (p < 0.05); increased the expression of anti-inflammatory cytokine gene interleukin 10 (IL10; p < 0.05) and nutrient transporters SLC15A1 (p < 0.05), FABP2 (p < 0.05) and vitamin D receptor (VDR; p < 0.05); and reduced the expression of pro-inflammatory cytokine gene IL6 (p < 0.05), it adversely affected average daily feed intake (ADFI; p < 0.001) and average daily gain (ADG; p < 0.05). Mushroom powder supplementation had a positive impact on gastrointestinal morphology (p < 0.05) and upregulated the expression of nutrient transporters SLC15A1 (p < 0.05) and FABP2 (p < 0.05) and tight junction claudin 1 (CLDN1) (p < 0.05) compared to the controls but had no effect on the expression of inflammatory markers (p > 0.05). Furthermore, MP reduced ADFI (p < 0.01); however, this did not negatively impact the ADG (p > 0.05). In conclusion, MP and MPD2 have limited use as commercial feed additives in replacing ZnO in pig diets as feed intake was reduced post-weaning.
This study was conducted to examine the effects of varying selenium (Se) inclusion levels, in the form of Se-enriched mushroom powder (SeMP) and selenite, on post-weaning growth performance (Period 1; day 1–21), intestinal health and antioxidant capacity (Period 2; day 21–39). Weaned pigs were blocked according to live weight, sex and litter of origin and randomly assigned to the following experimental groups: basal (basal + selenite (0.3 ppm Se)); ZnO (basal + ZnO + selenite (0.3 ppm Se)); 0.15 SeMP (basal + SeMP (0.15 ppm Se)); 0.3 SeMP (basal + SeMP (0.3 ppm Se)) and 0.6 SeMP/Sel (basal + SeMP (0.3 ppm Se) + selenite (Sel) (0.3 ppm Se)) with eight replicates/experimental group. After 21 days, the ZnO experimental group was removed from the experiment and the remaining pigs continued on their respective diet until day 39 post-weaning (Period 2). In Period 1, 0.15 SeMP supplementation reduced (p < 0.05) average daily gain (ADG), average daily feed intake (ADFI) and day 21 body weight, and increased (p < 0.05) faecal scores compared to the ZnO group. Supplementation with 0.3 SeMP and 0.6 SeMP/Sel during Period 1 resulted in similar (p > 0.05) ADG, ADFI, gain-to-feed ratio (G:F) and body weight compared to the ZnO group. However, 0.6 SeMP/Sel supplementation increased (p < 0.05) faecal scores compared to the ZnO group. In Period 2, 0.6 SeMP/Sel increased (p < 0.05) ADG, feed efficiency and day 39 body weight compared to the basal group. Supplementation with Se-enriched mushroom powder, at all inclusion levels, increased (p < 0.05) the abundance of Prevotellaceae and Prevotella, decreased (p < 0.05) the abundance of Sporobacter and increased (p < 0.05) the expression of SELENOP in the jejunum compared to the basal group. Lactobacillaceae and Lactobacillus was increased (p < 0.05) in 0.15 SeMP and 0.3 SeMP pigs compared to the basal group. Selenium deposition in muscle and liver tissue increased (p < 0.001) as a function of inclusion level while pigs supplemented with 0.3 ppm organic Se (0.3 SeMP) had an increase (p < 0.05) in total Se in the muscle compared to pigs supplemented with 0.3 ppm inorganic Se (basal). In conclusion, 0.3 SeMP supplementation led to positive effects on faecal scores and had similar pig performance compared to ZnO in Period 1, while the addition of 0.3 ppm selenite to 0.3 SeMP (0.6 SeMP/Sel) in Period 2 led to enhanced pig performance and aspects of gastrointestinal health.
Background There is an urgent need to identify natural bioactive compounds that can enhance gastrointestinal health and promote pig growth performance in the absence of pharmacological levels of zinc oxide (ZnO). The objectives of this study were to: 1) compare the effects of mushroom powder supplemented with inorganic selenium (inSeMP) to mushroom powder enriched with organic selenium (orgSeMP) to pharmacological levels of ZnO on growth performance and faecal scores (FS) for the first 21 d post-weaning (Period 1); and 2) compare the molecular and microbial effects of inSeMP and orgSeMP in these pigs on d 39 post-weaning (Period 2). Methods In Period 1, pigs (3 pigs/pen; 8 pens/treatment) were assigned to: (1) basal diet (control); (2) basal diet + zinc oxide (ZnO) (3100 mg/kg d 1–14, 1550 mg/kg d 15–21); (3) basal diet + mushroom powder supplemented with inorganic selenium (inSeMP) containing selenium (selenite) content of 0.3 mg/kg feed; (4) basal diet + mushroom powder enriched with organic selenium (orgSeMP) containing selenium (selenocysteine) content of 0.3 mg/kg feed. Mushroom powders were included at 6.5 g/kg of feed. Results In Period 1, there was no effect of diets on average daily gain (ADG) and gain:feed (G:F) ratio (P > 0.05). The orgSeMP supplemented pigs had a lower average daily feed intake (ADFI) compared to all other groups (P < 0.05). The ZnO supplemented pigs had reduced FS compared to the basal and mushroom group, while the orgSeMP supplemented pigs had lower FS compared to the basal group during the 21 d experimental period (P < 0.05). In Period 2, there was no effect of diets on ADFI, ADG and G:F ratio (P > 0.05). The orgSeMP supplementation increased the caecal abundance of bacterial members of the Firmicutes and Bacteroidetes phylum, including Lactobacillus, Agathobacter, Roseburia, and Prevotella and decreased the abundance of Sporobacter compared to the basal group, while inSeMP increased the caecal abundance of Prevotella and decreased the caecal abundance of Sporobacter compared to the basal group (P < 0.05). Dietary supplementation with inSeMP increased expression of TLR4 and anti-inflammatory cytokine gene IL10 and decreased nutrient transporter gene FABP2 compared to the orgSeMP group (P < 0.05). Conclusion OrgSeMP is a novel and sustainable way to incorporate selenium and β-glucans into the diet of weaned pigs whilst improving FS and modulating the caecal microbiota.
A complete randomised block design experiment was conducted to examine the effects of mushroom powder (MP) and vitamin D2‐enriched mushroom powder (MPD2) on growth performance, faecal scores, coefficient of apparent total tract digestibility (CATTD) of nutrients and selected microflora in weaned pigs up to day 35 post‐weaning. One hundred and ninety‐two weaned pigs (7.8kg [SD 1.08kg]) were blocked according to live weight, sex and litter of origin and randomly assigned to the following: (T1) control diet; (T2) control diet +MP; (T3) control diet + MPD2; and (T4) control diet +zinc oxide (ZnO) (n = 12 replicates/treatment). Mushroom powders were included at 2 g/kg of feed achieving a β‐glucan content of 200ppm. ZnO was included at 3100 mg/kg feed and halved to 1550 mg/kg after 21 days. Vitamin D content was enhanced in MPD2 using synthetic UVB exposure to obtain a vitamin D2 level of 100 µg/kg of feed. Faecal samples were collected on day 14 for microbial and nutrient digestibility analysis. There was no difference (p > 0.05) in ADG, G:F, faecal scores, microbial populations and CATTD of nutrients in pigs supplemented with MP or MPD2 compared with the control diet. The supplementation of MP and MPD2 caused a reduction (p < 0.05) in feed intake compared with the control and ZnO diet throughout the 35‐day experimental period. ZnO supplementation increased ADG and ADFI (p < 0.05) during the first period (D0‐21) compared with pigs offered MP and MPD2. In conclusion, MP and MPD2 supplementation resulted in similar ADG, G:F, faecal scores compared with the control but were not comparable to ZnO, mainly due to a reduction in feed intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.