Fin whales (Balaenoptera physalus) are widely considered an offshore and oceanic species, but certain populations also use coastal areas and semi-enclosed seas. Based upon fifteen years of study, we report that Canadian Pacific fin whales (B. p. velifera) have returned to the Kitimat Fjord System (KFS) in the Great Bear Rainforest, and have established a seasonally resident population in its intracoastal waters. This is the only fjord system along this coast or elsewhere in which fin whales are known to occur regularly with strong site fidelity. The KFS was also the only Canadian Pacific fjord system in which fin whales were commonly found and killed during commercial whaling, pointing to its long-term importance. Traditional knowledge, whaling records, and citizen science databases suggest that fin whales were extirpated from this area prior to their return in 2005–2006. Visual surveys and mark-recapture analysis documented their repopulation of the area, with 100–120 whales using the fjord system in recent years, as well as the establishment of a seasonally resident population with annual return rates higher than 70%. Line transect surveys identified the central and outer channels of the KFS as the primary fin whale habitat, with the greatest densities occurring in Squally Channel and Caamaño Sound. Fin whales were observed in the KFS in most months of the year. Vessel- and shore-based surveys (27,311 km and 6,572 hours of effort, respectively) indicated regular fin whale presence (2,542 detections), including mother-calf pairs, from June to October and peak abundance in late August–early September. Seasonal patterns were variable year-to-year, and several lines of evidence indicated that fin whales arrived and departed from the KFS repeatedly throughout the summer and fall. Additionally, we report on the population’s social network and morphometrics. These findings offer insights into the dynamics of population recovery in an area where several marine shipping projects are proposed. The fin whales of the Great Bear Rainforest represent a rare exception to general patterns in this species’ natural history, and we highlight the importance of their conservation.
Animal culture and social bonds are relevant to wildlife conservation because they influence patterns of geography, behavior, and strategies of survival. Numerous examples of socially-driven habitat partitioning and ecological-niche specialization can be found among vertebrates, including toothed whales. But such social-ecological dynamics, described here as ‘social niche partitioning’, are not known among baleen whales, whose societies—particularly on foraging grounds—are largely perceived as unstructured and incidental to matters of habitat use and conservation. However, through 16 years of behavioral observations and photo-identifications of humpback whales (Megaptera novaeangliae) feeding within a fjord system in the Canadian Pacific (primarily within Gitga’at First Nation waters), we have documented long-term pair bonds (up to 12 years) as well as a complex societal structure, which corresponds closely to persistent patterns in feeding strategy, long-term site fidelity (extended occupancy and annual rate of return up to 75%), specific geographic preferences within the fjord system, and other forms of habitat use. Randomization tests of network congruency and clustering algorithms were used to test for overlap in patterns of social structure and habitat use, which confirmed the occurrence of social niche partitioning on the feeding grounds of this baleen whale species. In addition, we document the extensive practice of group bubble net feeding in Pacific Canada. This coordinated feeding behavior was found to strongly mediate the social structure and habitat use within this humpback whale society. Additionally, during our 2004–2019 study, we observed a shift in social network structure in 2010–2012, which corresponded with environmental and demographic shifts including a sudden decline in the population’s calving rate. Our findings indicate that the social lives of humpback whales, and perhaps baleen whales generally, are more complex than previously supposed and should be a primary consideration in the assessment of potential impacts to important habitat.
ContextThe shore-based survey is a common, non-invasive, and low-cost method in marine mammal science, but its scientific applications are currently limited. Such studies typically target populations whose distributions are not random with respect to nearshore sites and involve repeated scans of the same area from single, stationary platforms. These circumstances prohibit the use of classic distance sampling techniques for estimating animal densities or distributions, particularly the derivation of a detection function that describes the probability of detecting targets at various distances from the observer. AimsHere, we present a technique for estimating land-based detection functions, as well as quantifying uncertainty in their parameterisation, on the basis of the range-specific variability of observations from one scan to the next. MethodsThis Bayesian technique uses Monte Carlo simulation to determine the likelihood of thousands of candidate detection functions, then conducts weighted sampling to generate a posterior distribution estimate of the detection function parameterisation. We tested the approach with both archival and artificial datasets built from known detection functions that reflect whale and porpoise detectability. Key resultsWhen the base distribution of targets was random, the whale detection function was estimated without error (i.e. the difference of the median of the posterior and the true value was 0.00), and the porpoise detection function was estimated with an error equal to 4.23% of the true value. When the target base distribution was non-random, estimation error remained low (2.57% for targets concentrated offshore, 1.14% when associated with nearshore habitats). When applied to field observations of humpback whales and Dall’s porpoises from a land-based study in northern British Columbia, Canada, this technique yielded credible results for humpback whales, but appeared to underestimate the detectability of Dall’s porpoises. ConclusionThe findings presented here indicate that this approach to detection function estimation is appropriate for long-running surveys in which scan regularity is high and the focus is on large, slow-moving, low herd-size, and easily detectable species. ImplicationsThe derivation of a detection function is a critical step in density estimation. The methodology presented here empowers land-based studies to contribute to quantitative monitoring and assessment of marine mammal populations in coastal habitats.
Animal culture and social bonds are relevant to wildlife conservation because they influence patterns of geography, behavior, and strategies of survival. Numerous examples of socially-driven habitat partitioning and ecological-niche specialization can be found among vertebrates, including toothed whales. But such social-ecological dynamics, described here as ‘social niche partitioning’, are not known among baleen whales, whose societies -- particularly on foraging grounds -- are largely perceived as unstructured and incidental to matters of habitat use and conservation. However, through 16 years of behavioral and photo-identification observations of humpback whales (Megaptera novaeangliae) feeding within a fjord system in British Columbia, Canada, we have documented long-term pair bonds (lasting up to 12 years) as well as a complex societal structure, which corresponds closely to persistent patterns in feeding strategy, long-term site fidelity (extended seasonal occupancy and annual rate of return up to 75%), specific geographic preferences within the fjord system, and other forms of habitat use. Randomization tests of network congruency and clustering algorithms were used to test for overlap in patterns of social structure and habitat use, which confirmed the occurrence of social niche partitioning on the feeding grounds of this baleen whale. In addition, we document the extensive practice of group bubble net feeding in Pacific Canada. This coordinated feeding behavior was found to strongly mediate the social structure and habitat use within this humpback whale society. Additionally, during our 2004 – 2019 study, we observed a shift in social network structure in 2010 – 2012, which corresponded with environmental and demographic shifts including a sudden decline in the population’s calving rate. Our findings indicate that the social lives of humpback whales, and perhaps baleen whales generally, are more complex than previously supposed and should be a primary consideration in the assessment of potential impacts to important habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.