Chondrogenically primed bone marrow derived mesenchymal stem cells (MSCs) have been shown to become hypertrophic and undergo endochondral ossification when implanted in vivo. Modulating this endochondral phenotype may be an attractive approach to engineering the osseous phase of an osteochondral implant. The objective of this study was to engineer an osteochondral tissue by promoting endochondral ossification in one layer of a bi-layered construct and stable cartilage in the other. The top-half of bi-layered agarose hydrogels were seeded with culture expanded chondrocytes (termed chondral layer) and the bottom half of the bi-layered agarose hydrogels with MSCs (termed osseous layer). Constructs were cultured in a chondrogenic medium for 21 days and thereafter were either maintained in a chondrogenic medium, transferred to a hypertrophic medium, or implanted subcutaneously into nude mice. This structured chondrogenic bi-layered co-culture was found to enhance chondrogenesis in the chondral layer, appearing to help re-establish the chondrogenic phenotype that is lost in chondrocytes during monolayer expansion. Furthermore, the bilayered co-culture appeared to suppress hypertrophy and mineralisation in the osseous layer.The addition of hypertrophic factors to the media was found to induce mineralisation of the osseous layer in vitro. A similar result was observed in vivo where endochondral ossification was restricted to the osseous layer of the construct leading to the development of an osteochondral tissue. This novel approach represents a potential new treatment strategy for the repair of osteochondral defects.
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) have been shown to generate bone in vivo by executing an endochondral program. This may hinder the use of MSCs for articular cartilage regeneration, but opens the possibility of using engineered cartilaginous tissues for large bone defect repair. Hydrogels may be an attractive tool in the scaling-up of such tissue engineered grafts for endochondral bone regeneration. In this study, we compared the capacity of different naturally derived hydrogels (alginate, chitosan, and fibrin) to support chondrogenesis and hypertrophy of MSCs in vitro and endochondral ossification in vivo. In vitro, alginate and chitosan constructs accumulated the highest levels of sGAG, with chitosan constructs synthesising the highest levels of collagen. Alginate and fibrin constructs supported the greatest degree of calcium accumulation, though only fibrin constructs calcified homogenously. In vivo, chitosan constructs facilitated neither vascularization nor endochondral ossification, and also retained the greatest amount of sGAG, suggesting it to be a more suitable material for the engineering of articular cartilage.Both alginate and fibrin constructs facilitated vascularization and endochondral bone formation as well as the development of a bone marrow environment. Alginate constructs accumulated significantly more mineral and supported greater bone formation in central regions of the engineered tissue. In conclusion, this study demonstrates the capacity of chitosan hydrogels to promote and better maintain a chondrogenic phenotype in MSCs and highlights the potential of utilizing alginate hydrogels for MSC-based endochondral bone tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.