Purpose To propose and evaluate a novel multidimensional approach for imaging sub-voxel tissue compartments called Diffusion-Relaxation Correlation Spectroscopic Imaging (DR-CSI). Theory and Methods Multi-exponential modeling of MR diffusion or relaxation data is commonly used to infer the many different microscopic tissue compartments that contribute signal to macroscopic MR imaging voxels. However, multi-exponential estimation is known to be difficult and ill-posed. Observing that this ill-posedness is theoretically reduced in higher dimensions, DR-CSI uses a novel multidimensional imaging experiment that jointly encodes diffusion and relaxation information, and then uses a novel constrained reconstruction technique to generate a multidimensional diffusion-relaxation correlation spectrum for every voxel. The peaks of the multidimensional spectrum are expected to correspond to the distinct tissue microenvironments that are present within each macroscopic imaging voxel. Results Using numerical simulations, experiment data from a custom-built phantom, and experiment data from a mouse model of traumatic spinal cord injury, DR-CSI is demonstrated to provide substantially better multi-compartment resolving power compared to conventional diffusion- and relaxation-based methods. Conclusion The DR-CSI approach provides powerful new capabilities for resolving the different components of multi-compartment tissue models, and can be leveraged to significantly expand the insights provided by MRI in studies of tissue microstructure.
Purpose R2* (1/T2*) and single echo R2 (1/T2) have been calibrated to liver iron concentration (LIC) in patients with thalassemia and transfusion-dependent sickle cell disease at 1.5T. The R2*-LIC relationship is linear, whereas that of R2 is curvilinear. However, the increasing popularity of high-field scanners requires generalizing these relationships to higher field strengths. In this study, we tested the hypothesis that numerical simulation can accurately determine the field dependence of iron-mediated transverse relaxation rates. Methods We previously replicated the calibration curves between R2 and R2* and iron at 1.5T using Monte Carlo models incorporating realistic liver structure, iron deposit susceptibility, and proton mobility. In this paper, we extend our model to predict relaxivity-iron calibrations at higher field strengths. Predictions were validated by measuring R2 and R2* at 1.5T and 3T in six β-thalassemia major patients. Results Predicted R2* increased twofold at 3T from 1.5T, whereas R2 increased by a factor of 1.47. Patient data exhibited a coefficient of variation of 3.6% and 7.2%, respectively, to the best-fit simulated data. Simulations over the range 0.25T–7T showed R2* increasing linearly with field strength, whereas R2 exhibited a concave-downward relationship. Conclusion A model-based approach predicts alterations in relaxivity-iron calibrations with field strength without repeating imaging studies. The model may generalize to alternative pulse sequences and tissue iron distribution.
3T-UTE imaging can reliably estimate high liver iron burdens. In conjunction with 3T-GRE, 3T-UTE allows clinical LIC estimation across a wide range of liver iron loads. Magn Reson Med 79:1579-1585, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.