Objective To optimize the use of CT-guided modeling for the calculation of body surface area (BSA) in domestic rabbits (Oryctolagus cuniculus). Animals 12 domestic rabbits. Procedures Adult rabbits (body weight, 1 to > 4 kg) that were client-owned animals undergoing CT for disease diagnosis or deceased laboratory animals donated from other research projects were scanned with a CT scanner. Images were transferred to a radiation therapy planning software program. Image slices were captured as contiguous slices at 100 kVp and 100 mA and processed to 0.1-cm-thick sections. The length of each contoured slice was summed to calculate a final BSA measurement. Nonlinear regression analysis was then used to derive an equation for the calculation of BSA in rabbits. Results The constant calculated by use of this method was 9.9 (range, 9.59 to 10). The R2 for the goodness of fit was 0.9332. The equation that best described BSA as a function of body weight for domestic rabbits with this method was as follows: BSA = (9.9 × [body weight {in grams}]2/3)/10,000. Conclusions and Clinical Relevance The BSA calculated via the CT-guided method yielded results similar to those obtained with equations for other similarly sized mammals and verified the use of such equations for rabbits. Additionally, this technique can be used for species that lack equations for the accurate calculation of BSA.
Purpose The purpose of this work is to evaluate the Hyperscint‐RP100 scintillation dosimetry research platform (Hyperscint‐RP100, Medscint Inc., Quebec, QC, Canada) designed for clinical quality assurance (QA) for use in in vivo dosimetry measurements. Methods The pre‐clinical evaluation of the scintillator was performed using a Varian TrueBeam linear accelerator. Dependency on field size, depth, dose, dose rate, and temperature were evaluated in a water tank and compared to calibration data from commissioning and annual QA. Angularity was evaluated with a 3D printed phantom. The clinical evaluation was first performed in two cadaver dogs, and then in three companion animal dogs receiving radiation therapy for nasal tumors. A treatment planning CT scan was performed for cadavers and clinical patients. Prior to treatment, the probe was inserted into the radiation field. Radiation was then delivered and measured with the scintillator. For cadavers, the treatment was repeated after making an intentional shift in patient position to simulate a treatment error. Results In the preclinical measurements the dose differed from annual measurements as follows: field size −0.77 to 0.43%, depth dose −0.36 to 1.14%, dose −0.54 to 2.93%, dose rate 0.3 to 3.6%, and angularity −1.18 to 0.01%. Temperature dependency required a correction factor of 0.11%/°C. In the two cadavers, the dose differed by −1.17 to 0.91%. The device correctly detected the treatment error when the heads were intentionally laterally shifted. In three canine clinical patients treated in multiple fractions, the detected dose ranged from 98.33 to 103.15%. Conclusion Results of this new device are promising although more work is necessary to fully validate it for clinical dosimetry.
Purpose: To assess if the TrueBeam HD120 collimator is delivering small IMRT fields accurately and consistently throughout the course of treatment using the SunNuclear PerFraction software. Methods: 7‐field IMRT plans for 8 canine patients who passed IMRT QA using SunNuclear Mapcheck DQA were selected for this study. The animals were setup using CBCT image guidance. The EPID fluence maps were captured for each treatment field and each treatment fraction, with the first fraction EPID data serving as the baseline for comparison. The Sun Nuclear PerFraction Software was used to compare the EPID data for subsequent fractions using a Gamma (3%/3mm) pass rate of 90%. To simulate requirements for SRS, the data was reanalyzed using a Gamma (3%/1mm) pass rate of 90%. Low‐dose, low‐ and high gradient thresholds were used to focus the analysis on clinically relevant parts of the dose distribution. Results: Not all fractions could be analyzed, because during some of the treatment courses the DICOM tags in the EPID images intermittently change from CU to US (unspecified), which would indicate a temporary loss of EPID calibration. This technical issue is still being investigated. For the remaining fractions, the vast majority (7/8 of patients, 95% of fractions, and 96.6% of fields) are passing the less stringent Gamma criteria. The more stringent Gamma criteria caused a drop in pass rate (90 % of fractions, 84% of fields). For the patient with the lowest pass rate, wet towel bolus was used. Another patient with low pass rates experienced masseter muscle wasting. Conclusion: EPID dosimetry using the PerFraction software demonstrated that the majority of fields passed a Gamma (3%/3mm) for IMRT treatments delivered with a TrueBeam HD120 MLC. Pass rates dropped for a DTA of 1mm to model SRS tolerances. PerFraction pass rates can flag missing bolus or internal shields. Sanjeev Saini is an employee of Sun Nuclear Corporation. For this study, a pre‐release version of PerFRACTION 1.1 software from Sun Nuclear Corporation was used.
Radiation therapy of the head and neck can result in mucositis and other acute affects in the oral cavity. This prospective pilot study evaluated a novel, intraoral, beam-blocking device for use during imaging and therapeutic procedures. The beam-blocking device was made from a metal alloy inserted into a coated frozen dessert mold (Popsicle® Mold, Cost Plus World Market, Oakland, CA). The device was designed so that it could be inserted into an outer shell, which in turn allowed it to be placed or removed depending on the need due to beam configuration. A Farmer type ionization chamber and virtual water phantom were used to assess effects of field size on transmission. Six large breed cadaver dogs, donated by the owner after death, were recruited for the study. Delivered dose at the dorsal and ventral surfaces of the device, with and without the alloy block in place, were measured using radiochromic film. It was determined that transmission was field size dependent with larger field sizes leading to decreased attenuation of the beam, likely secondary to scatter. The mean and median transmission on the ventral surface without the beam-blocking device was 0.94 [range 0.94-0.96]. The mean and median transmission with the beam-blocking device was 0.52 [range 0.50-0.57]. The mean and median increase in dose due to backscatter on the dorsal surface of the beam-blocking device was 0.04 [range 0.02-0.04]. Findings indicated that this novel device can help attenuate radiation dose ventral to the block in dogs, with minimal backscatter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.