Central (aortic or subclavian), brachial, radial and femoral pressure pulses were recorded simultaneously in 12 healthy subjects during conditions of rest, exercise and 70 degree head-up tilt. Peripheral systolic pressure at rest uniformly exceeded the central systolic pressure generated by the same heartbeat. The average radial pulse pressure was 146, 146 and 165 per cent of central pulse pressure during rest, exercise and tilt while radial mean pressures were 94, 93 and 98 per cent of central mean pressures respectively. Summation of the incident pulse wave with reflected waves from the periphery and resonance effects in the peripheral arterial systems may produce these changes in pressure and contour.
1. Measurements have been made of tension development in papillary muscles isolated from the right ventricles of young cats. In some cases membrane potentials have also been recorded, using micro electrodes. 2. Regular contractions at a stimulation rate of 20 min(-1) (the 'standard' rate used in this study) had the following characteristics (30 degrees C): peak tension developed, about 43mN mm(-2); time to peak tension and time to 80% repolarization of the cell membrane, about 400 ms. 3. The corresponding figures for the first contraction after a rest of several minutes (rested state contraction) were: tension developed, about 4mN mm(-2); time to peak tension and time to 80% repolarization of the cell membrane, about 560 ms. Sometimes there was also an early peak in the mechanical response, about 250 ms after stimulation. 4. The time course with which tension development declined when the muscle was allowed to rest was examined under various conditions. It was found to decline more slowly when the muscle was potentiated by raising the bathing Ca2+ concentration and by stimulation at rates above 20 min(-1). 5. Tension development in rested state contractions was found to depend on the Ca2+ and Na+ concentrations in the bathing solution. The full effect of a change in either could be produced by exposing the resting muscle to the altered ionic conditions. 6. These experimental findings have been interpreted in terms of a simple model of the calcium movements involved in excitation-contraction coupling in the myocardial cell.
I. Tension was recorded from a segment of a thin bundle of calf or sheep ventricular fibers in which the membrane potential could be changed electrically, using a sucrose-gap technique. After reversal of membrane potential and consequent contracture for 2 to 3 seconds, a positive inotropic effect 2 to 12 times that which occurred during paired-pulse stimulation was obtained. The decay of this potentiated state was slow in resting preparations (average half-life, 95 seconds), but was determined by the number of beats in driven preparations (about eight beats to return to control amplitude). Lengthening consecutive action potentials by subthreshold constant depolarizing currents or 5-mv shifts in the membrane potential by 50-msec current pulses during the plateau phase of successive action potentials caused positive inotropic effects, attaining a steady state in about eight beats. Reversing the polarity of such currents (hyperpolarization) caused negative inotropic effects with the same phase dependency as for depolarizing currents. These negative inotropic effects attained a steady state in six to eight beats. The first action potential after cessation of these currents was close to normal, whereas return to control tension required six to eight beats. The half-life of decay of these negative inotropic states at rest was similar to that of positive inotropic states. Decay of inotropic states in contracting preparations was phase dependent, occurring only during the rapid depolarization and plateau phases of the action potential.II. These and other strength-interval effects on cardiac contractility in a constant chemical and physical environment are consistent with two hypotheses. (1) The presystolic level of intracellular calcium bound to specific (rapid release) sites on the sarcoplasmic reticulum, the inner surfaces of the sarcolemma and T tubules, is a major determinant of the level of [Ca 2 + ]| attained during the initial phase of an action potential and hence the tension developed by mammalian cardiac muscle (that is, its inotropic state) at that particular instant. (2) The amount of intracellular.calcium present at these sites at any instant after an action potential (that is, the moment-to-moment inotropic state of the muscle) is predetermined in the inverse direction of the intersystolic intervals of prior systoles and in the positive direction by the duration and magnitude of the plateau phases of prior action potentials and (for rest periods as long as 10 seconds) the elapsed time, in an exponentially decreasing fashion, since termination of the last absolute refractory period. ADDITIONAL KEY WORDSstrength-interval relationships sucrose gap poststimulation potentiation extrasystolic potentiation depolarization contracture calcium movements voltage clamp sarcoplasmic reticulum intracellular calcium ions ventricular fiber membrane potentials and contractility
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.