Collective evidence demonstrates that the Miniature1 (Mn1) seed locus in maize encodes an endosperm-specific isozyme of cell wall Invertase, CWI-2. The evidence includes (1) isolation and characterization of ethyl methanesulfonate-induced mn1 mutants with altered enzyme activity and (2) a near-linear relationship between gene/dose and invertase activity and the CWI-2 protein. In addition, molecular analyses showed that the cDNA clone incw2 maps to the Mn1 locus and differentiates the six ethyl methanesulfonate-induced mn1 mutants of independent origin into two classes when RNA gel blot analyses were used. We also report two unexpected observations that provide significant new insight into the physiological role of invertase and its regulation in a developing seed. First, a large proportion of total enzyme activity (~90%) was dispensable (i.e., nonlimiting). However, below the threshold level of ~6% of wild-type activity, the endosperm enzyme controlled both the sink strength of the developing endosperm as well as the developmental stability of maternal cells in the pedicel in a rate-limiting manner. Our data also suggest an unusually tight coordinate control between the cell wall-bound and the soluble forms of invertase, which are most likely encoded by two separate genes, presumably through metabolic controls mediated by the sugars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.