We present an unconstrained ear recognition framework that outperforms state-of-the-art systems in different publicly available image databases. To this end, we developed CNN-based solutions for ear normalization and description, we used well-known handcrafted descriptors, and we fused learned and handcrafted features to improve recognition. We designed a two-stage landmark detector that successfully worked under untrained scenarios. We used the results generated to perform a geometric image normalization that boosted the performance of all evaluated descriptors. Our CNN descriptor outperformed other CNN-based works in the literature, specially in more difficult scenarios. The fusion of learned and handcrafted matchers appears to be complementary as it achieved the best performance in all experiments. The obtained results outperformed all other reported results for the UERC challenge, which contains the most difficult database nowadays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.