A portable fibre-probe fluorescence detection system comprising a continuous-wave high-power ultraviolet light emitting diode (UV LED) emitting at 365 nm as excitation source, a bifurcated fibre probe with a six-around-one fibre configuration to illuminate and read from a large target area (∼3.6 mm2) and an integrated PC-coupled spectrometer has been developed. The construction, calibration and operation of the fluorescence detection system are described. Demonstrative test measurements with the system for possible inspection of different ripening stages on some batches of horticultural and agricultural products (lemon, mandarin, banana leaf and ivy leaf) have been performed and results presented. The system is portable, comparatively low cost, easily operated and relative immune to ambient light, thus being suitable for field measurements.
Elevated exposure to Ultra-Violet Radiation (UVR) from the sun has led to adverse effects on human skin and foods, and therefore, the need for materials that offer resistance to Ultra-Violet (UV) penetration for protection. Some building window and non-window-materials, car-glasses, Linear Low Density Polyethylene (LLDPE) and Polyethylene Terephthalate (PET) rubber and plastic materials have been investigated to determine their transparencies and suitability for use as shields against UVR. These were studied by directly measuring scattered solar radiation through the optical window of a spectrometer and then measuring the scattered light when the window was completely covered with the material to be examined. Wavelengths of light that were not absorbed when sunlight was incident on the samples and the transmitted intensity of sunlight at each wavelength through each sample as compared to the transmitted intensity through air were determined in the UVB and UVA spectral regions. The results showed that the building window-glasses were opaque to UVB but transparent to UVA while the non-window-glasses exhibited transparency in the UVB and UVA spectral regions. The car-glass (laminated), used as windscreen, was opaque to UVB and UVA while the side-glass (non-laminated) was opaque to UVB but transparent to UVA. Perspex, sometimes used as an alternative to windscreen and side-glass in cars, exhibited transparency in UVB and UVA spectral regions. The LLDPE materials used for food storage were transparent to UVB and UVA while the PET plastic materials used for water, fruit juice and beverage storage was opaque to UVB but transparent to UVA.
In groundwater, dissolved organic matter (DOM), a complex material, is a contaminant of concern owing to its ability to influence water quality and stimulate microbial metabolism. Using a 445-nm diode laser-induced fluorescence (LIF) spectroscopy, DOM contamination levels have been investigated of well water samples fetched from ten privately owned hand-dug wells during dry and wet seasons of 2016, 2017 and 2018, in Ghana. The results showed spatio-temporal heterogeneities in the LIF spectra, and the fluorescence intensity peaks were generally higher and broader during the wet season than the dry season. In this study, DOM fluorescence spectra at an emission wavelength band of 460-650 nm showed two distinct broad peak shoulders within 480-500 nm and 550-570 nm, engulfing the water Raman peak at 527 ± 2 nm for all the water samples studied. Furthermore, principal component analysis and cluster analysis were used to differentiate the 2016 water samples based on their DOM contamination levels. In each case, three groups or clusters were identified based on their similarities and dissimilarities. The study revealed humic DOM substances as the most typical well water fluorophores. Applying the K-nearest neighbour algorithm as a classifier method for the classification of 30 water samples studied in 2016, 16.7% (5/30) were classified as very good drinking water, 46.7% (14/30) as good, 26.7% (8/30) as fairly good, and 10% (3/30) as bad drinking water samples. In general, levels of dissolved organic matter contamination increased over the study period during the rainy seasons for wells situated in close proximity to septic tanks, refuse dumps, public toilets and in wetlands. Thus, in the study the fluorescence intensity depends on the sampling site and the season, and indicates the DOM contamination level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.