The instationary Navier-Stokes equations with a free capillary boundary are considered in 2 and 3 space dimensions. A stable finite element discretization is presented. The key idea is the treatment of the curvature terms by a variational formulation. In the context of a discontinuous in time space-time element discretization stability in (weak) energy norms can be proved. Numerical examples in 2 and 3 space dimensions are given. Classification (1991): 35Q30, 65M12, 65M60, 76D05, 76D45
Mathematics Subject
Surface diffusion is a (fourth order highly nonlinear) geometric driven motion of a surface with normal velocity proportional to the surface Laplacian of mean curvature. We present a novel variational formulation for parametric surfaces with or without boundaries. The method is semi-implicit, requires no explicit parametrization, and yields a linear system of elliptic PDE to solve at each time step. We next develop a finite element method, propose a Schur complement approach to solve the resulting linear systems, and show several significant simulations, some with pinch-off in finite time. We introduce a mesh regularization algorithm, which helps prevent mesh distortion, and discuss the use of time and space adaptivity to increase accuracy while reducing complexity.
In this article a boundary feedback stabilization approach for incompressible Navier-Stokes flows is studied. One of the main difficulties encountered is the fact that after space discretization by a mixed finite element method (because of the solenoidal condition) one ends up with a differential algebraic system of index 2. The remedy here is to use a discrete realization of the Leray projection used by Raymond [J.-P. Raymond, SIAM J. Control Optim., 45 (2006), pp. 790-828] to analyze and stabilize the continuous problem. Using the discrete projection, a linear quadratic regulator (LQR) approach can be applied to stabilize the (discrete) linearized flow field with respect to small perturbations from a stationary trajectory. We provide a novel argument that the discrete Leray projector is nothing else but the numerical projection method proposed by Heinkenschloss and colleagues in [M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.