Proton nuclear magnetic resonance (NMR)-based metabolic phenotyping of urine and blood plasma/serum samples provides important prognostic and diagnostic information and permits monitoring of disease progression in an objective manner. Much effort has been made in recent years to develop NMR instrumentation and technology to allow the acquisition of data in an effective, reproducible, and high-throughput approach that allows the study of general population samples from epidemiological collections for biomarkers of disease risk. The challenge remains to develop highly reproducible methods and standardized protocols that minimize technical or experimental bias, allowing realistic interlaboratory comparisons of subtle biomarker information. Here we present a detailed set of updated protocols that carefully consider major experimental conditions, including sample preparation, spectrometer parameters, NMR pulse sequences, throughput, reproducibility, quality control, and resolution. These results provide an experimental platform that facilitates NMR spectroscopy usage across different large cohorts of biofluid samples, enabling integration of global metabolic profiling that is a prerequisite for personalized healthcare.
Here we show, for the first time, evidence of the primary molecular structures in humic substances (HS), the most abundant naturally occurring organic molecules on Earth, and their associations as mixtures in terrestrial systems. Multi-dimensional nuclear magnetic resonance (NMR) experiments show us that the major molecular structural components in the mixtures operationally defined as HS are aliphatic acids, ethers, esters and alcohols; aromatic lignin derived fragments; polysaccharides and polypeptides. By means of diffusion ordered spectroscopy, distinct diffusion coefficients consistent with relatively low molecular weight molecules were observed for all the components in the mixtures, and saccharides were the largest single class of component present. Liquid chromatography NMR confirmed that HS components can be easily separated and nuclear Overhauser effect (NOE) enhancements support the finding that the components are of relatively low molecular weight
The authenticity, the grape variety, the geographical origin, and the year of vintage of wines produced in Germany were investigated by (1)H NMR spectroscopy in combination with several steps of multivariate data analysis including principal component analysis (PCA), linear discrimination analysis (LDA), and multivariate analysis of variance (MANOVA) together with cross-validation (CV) embedded in a Monte Carlo resampling approach (MC) and others. A total of about 600 wines were selected and carefully collected from five wine-growing areas in the southern and southwestern parts of Germany. Simultaneous saturation of the resonances of water and ethanol by application of a low-power eight-frequency band irradiation using shaped pulses allowed for high receiver gain settings and hence optimized signal-to-noise ratios. Correct prediction of classification of the grape varieties of Pinot noir, Lemberger, Pinot blanc/Pinot gris, Müller-Thurgau, Riesling, and Gewürztraminer of 95% in the wine panel was achieved. The classification of the vintage of all analyzed wines resulted in correct predictions of 97 and 96%, respectively, for vintage 2008 (n = 318) and 2009 (n = 265). The geographic origin of all wines from the largest German wine-producing regions, Rheinpfalz, Rheinhessen, Mosel, Baden, and Württemberg, could be predicted 89% correctly on average. Each NMR spectrum could be regarded as the individual "fingerprint" of a wine sample, which includes information about variety, origin, vintage, physiological state, technological treatment, and others.
High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) allows the application of solution-state NMR experiments to samples that are not fully soluble and contain solids. Only the species in contact with the solvent system employed become NMR observable. In this study utilizing D2O as the solvent system we show it is possible to examine the structures at the solid-aqueous interface of a whole soil. Combining one- and two-dimensional HR-MAS NMR allowed, for the first time, the identification of fatty acids, aliphatic esters, and ethers/ alcohols as prominent species at the solid-aqueous interface of the soil with signals from sugars and amino acids also apparent. Few, if any signals from aromatic protons were observed when the soil was swollen in aqueous media, although these signals are observed in extracts from the same soil and when the soil is swollen with a more penetrating solvent(DMSO-d6)which is known to disassociate hydrogen bonds. These findings indicate that the soil aromatic moieties are protected in hydrophobic regions which are not water accessible. Furthermore, when the soil was amended with a herbicide (trifluralin), direct observations of interactions between the protons on a xenobiotic and the surrounding soil matrix were possible for the first time. HR-MAS promises to be a method that can be widely applicable to a range of complex environmental samples without the need for extraction, pretreatment, or purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.