Recent observational studies have shown that the centers of action of interannual variability of the North Atlantic Oscillation (NAO) were located farther eastward during winters of the period 1978-97 compared to previous decades of the twentieth century. In this study, which focuses on the winter season (December-March), new diagnostics characterizing this shift are presented. Further, the importance of this shift for NAO-related interannual climate variability in the North Atlantic region is discussed. It is shown that an NAO-related eastward shift in variability can be found for a wide range of different parameters like the number of deep cyclones, near-surface air temperature, and turbulent surface heat flux throughout the North Atlantic region. By using a near-surface air temperature dataset that is homogenous with respect to the kind of observations used, it is shown that the eastward shift is not an artifact of changes in observational practices that took place around the late 1970s. Finally, an EOF-based Monte Carlo test is developed to quantify the probability of changes in the spatial structure of interannual NAO variability for a relatively short (20 yr) time series given multivariate ''white noise.'' It is estimated that the likelihood for differences in the spatial structure of the NAO between two independent 20-yr periods, which are similar (as measured by the angle and pattern correlation between two NAO patterns) to the observed differences, to occur just by chance is about 18%. From the above results it is argued that care has to be taken when conclusions about long-term properties of NAO-related climate variability are being drawn from relatively short recent observational data (e.g., 1978-97).
[1] This study provides the first monthly resolved, 41-year record of geochemical variations (d 18 O and Sr/Ca) in a fast-growing Diploria strigosa brain coral from Guadeloupe, Caribbean Sea. Linear regression yields a significant correlation of coral Sr/Ca (d O; p < 0.0001) demonstrates the applicability of geochemical proxies measured from Diploria strigosa corals as reliable recorders for interannual temperature variability. Both coral proxies are highly correlated with annual and seasonal mean time series of major SST indices in the northern tropical Atlantic (e.g., r = À0.71 for correlation between the index of North Tropical Atlantic SST anomaly and Sr/Ca, and r = À0.70 for d 18 O; mean annual scale, p < 0.001). Furthermore, the coral proxies capture the impact of the El Niño-Southern Oscillation on the northern tropical Atlantic during boreal spring. Thus fast-growing Diploria strigosa corals are a promising new archive for the Atlantic Ocean.
North Atlantic synoptic-scale processes are analyzed by bandpassing 6-hourly NCEP-NCAR reanalysis data for several synoptic ranges corresponding to ultrahigh-frequency variability (0.5-2 days), synopticscale variability (2-6 days), slow synoptic processes (6-12 days), and low-frequency variability (12-30 days). Climatological patterns of the intensity of synoptic processes are not collocated for different ranges of variability, especially in the lower troposphere. Intensities of synoptic processes demonstrate opposite trends between the North American coast and in the northeast Atlantic. Although north of 40ЊN the intensity of ultrahigh-frequency variability and synoptic-scale processes show similar interannual variability, further analysis indicates that secular changes, and decadal-scale and interannual variability in the intensities of synoptic processes may not be necessarily consistent for different synoptic timescales. Magnitudes of winter ultrahigh-frequency variability are highly correlated with the intensity of synoptic-scale processes in the 1960s and early 1970s. However, they show little agreement with each other during the last two decades, pointing to the remarkable change in atmospheric variability over the North Atlantic in late 1970s. North Atlantic ultrahigh-frequency variability in winter is highly correlated with surface temperature gradient anomalies in the Atlantic-American sector. These gradients are computed from the merged fields of SST and surface temperature over the continent. They demonstrate a dipolelike pattern associated with the North American coast on one hand, with the subpolar SST front and continental Canada on the other. High-frequency variability and its synoptic counterpart demonstrate different relationships with the North Atlantic Oscillation. Reliability of these results and their sensitivity to the filtering procedures are addressed by comparison to radiosonde data and application of alternative filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.