To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant monomerization of the photoreceptor and interaction with COP1, the central regulator of light signaling. Thereby this signaling cascade controlled by UVR8 mediates UV-B photomorphogenic responses securing plant acclimation and thus promotes survival in sunlight.
Light and gibberellins (GAs) mediate many essential and partially overlapping plant developmental processes. DELLA proteins are GA-signalling repressors that block GA-induced development 1 . GA induces degradation of DELLA proteins via the ubiquitin/ proteasome pathway 2 , but light promotes accumulation of DELLA proteins by reducing GA levels 3 . It was proposed that DELLA proteins restrain plant growth largely through their effect on gene expression 4,5 . However, the precise mechanism of their function in coordinating GA signalling and gene expression remains unknown. Here we characterize a nuclear protein interaction cascade mediating transduction of GA signals to the activity regulation of a light-responsive transcription factor. In the absence of GA, nuclear-localized DELLA proteins accumulate to higher levels, interact with phytochrome-interacting factor 3 (PIF3, a bHLH-type transcription factor) and prevent PIF3 from binding to its target gene promoters and regulating gene expression, and therefore abrogate PIF3-mediated light control of hypocotyl elongation. In the presence of GA, GID1 proteins (GA receptors) elevate their direct interaction with DELLA proteins in the nucleus, trigger DELLA protein's ubiquitination and proteasome-mediated degradation, and thus release PIF3 from the negative effect of DELLA proteins.Light and GA interact during Arabidopsis thaliana seedling development, regulating hypocotyl elongation, cotyledon opening and light-responsive gene expression; their pathways seem to converge at regulation of the abundance of DELLA proteins (GA pathway repressors) 3,6 . Arabidopsis has five DELLA proteins-RGA, GAI, RGL1, RGL2 and RGL3-defined by their unique DELLA domain and a conserved GRAS domain 4 . To analyse them in vivo, we raised antibodies against endogenous RGA and generated transgenic Arabidopsis expressing each of the five DELLA proteins with tandem affinity purification (TAP) tags ( Supplementary Fig. 1). The response of DELLA protein levels to exogenously applied GA 3 (an active form of GA) or PAC (paclobutrazol, a GA biosynthesis inhibitor) was examined. We found that one-hour-long GA treatment eliminates the majority of DELLA proteins, and this GA effect can be largely prevented by 100 mM MG132 (a 26S proteasome-specific inhibitor). PAC, on the other hand, promotes over-accumulation of DELLA proteins (Fig. 1). These results show for the first time in Arabidopsis that all the DELLA proteins are under negative control by GA and the proteasome. Next, we generated lines expressing TAPtagged RGAD17 and GAID17, which lack a 17 amino acid motif within the DELLA domain that is required for GA-induced degradation 7,8 . As expected, TAP-RGAD17 and TAP-GAID17 are completely resistant to GA and accumulate at higher levels than wild-type proteins, which cannot be further increased by PAC (Fig. 1, and *These authors contributed equally to this work. WTAnti-RPN6Anti-RGA Immunoblot analysis of RGA (by anti-RGA antibody) and TAP-DELLA proteins (by anti-MYC antibody) in various light-grown Ara...
Plants are responsive to temperature, and can distinguish differences of 1ºC. In Arabidopsis, warmer temperature accelerates flowering and increases elongation growth (thermomorphogenesis). The mechanisms of temperature perception are however largely unknown. We describe a major thermosensory role for the phytochromes (red light receptors) during the night. Phytochrome null plants display a constitutive warm temperature response, and consistent with this, we show in this background that the warm temperature transcriptome 2 becomes de-repressed at low temperatures. We have discovered phytochrome B (phyB) directly associates with the promoters of key target genes in a temperature dependent manner.The rate of phyB inactivation is proportional to temperature in the dark, enabling phytochromes to function as thermal timers, integrating temperature information over the course of the night. One Sentence Summary:The plant temperature transcriptome is controlled at night by phytochromes, acting as thermoresponsive transcriptional repressors. Main Text:Plant development is responsive to temperature, and the phenology and distribution of crops and wild plants have already altered in response to climate change (1, 2). In Arabidopsis thaliana, warm temperature-mediated elongation growth and flowering is dependent on the bHLH transcription factors PHYTOCHROME INTERACTING FACTOR4 and 5 (PIF4 and 5) (3-6). Growth at 27ºC reduces the activity of the Evening Complex (EC) resulting in greater PIF4 transcription. The EC is a transcriptional repressor made up of the proteins EARLY FLOWERING3 (ELF3), ELF4 and LUX ARRHYTHMO (LUX) (7-9). To test if the EC is also required for hypocotyl elongation responses below 22ºC, we examined the behavior of elf3-1 and lux-4 at 12 and 17ºC. Hypocotyl elongation in elf3-1 and lux-4 is largely suppressed at lower temperatures (Fig. 1A, B), which is consistent with cold temperatures being able to suppress PIF4 overexpression phenotypes (10). Since PHYTOCHROME B (PHYB) was identified as a QTL for thermal responsiveness and PIF4 activity is regulated by phytochromes (8, 11), we investigated whether these red light receptors control hypocotyl elongation in the range 12 to 22ºC. Plants lacking phytochrome activity (12) show constitutively long hypocotyls at 12ºC and 17ºC. Thus phytochromes are essential for responding to temperature (Fig. 1C, D and Fig. S1).We used transcriptome analysis to determine whether disrupted thermomorphogenesis in phyABCDE is specific for temperature signaling or is a consequence of misregulated growth pathways. To capture diurnal variation in thermoresponsiveness, we sampled seedlings over 24 hours at 22 and 27ºC. Clustering analysis reveals 20 groups of transcripts ( Fig. 2A and Fig. S3; described in supplement). Thermomorphogenesis occurs predominantly at night and is driven by PIF4. Consistent with this, we observe PIF4 is present in cluster 20, which is more highly expressed at 27ºC during darkness. Clusters 15 and 16 represent the other major groups of 3 nighttim...
Ambient temperature regulates many aspects of plant growth and development, but its sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor participates in temperature perception through its temperature-dependent reversion from the active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing Arabidopsis seedlings to warm environments reduce both the abundance of the biologically active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight. Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally stable variants under various combinations of light and temperature revealed that phyB is physiologically responsive to both signals. We therefore propose that in addition to its photoreceptor functions, phyB is a temperature sensor in plants.
Following light-induced nuclear translocation, specific members of the phytochrome (phy) photoreceptor family (phyA to phyE) interact with bHLH transcription factors, such as PIF3, and induce changes in target-gene expression. The biochemical mechanism comprising signal transfer from phy to PIF3 has remained undefined but results in rapid degradation of PIF3. We provide evidence that photoactivation of phy induces rapid in vivo phosphorylation of PIF3 preceding degradation. Both phyA and phyB redundantly induce this PIF3 phosphorylation, as well as nuclear speckle formation and degradation, by direct interaction with PIF3 via separate binding sites. These data suggest that phy-induced phosphorylation of proteins such as PIF3 may represent the primary intermolecular signaling transaction of the activated photoreceptor, tagging the target protein for proteosomal degradation, possibly in nuclear speckles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.